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Bandura A.l.
PROPERTIES OF POSITIVE CONTINUOUS FUNCTIONS IN C*"

The properties of classes Q£ and Q of positive continuous functions are investigated. We prove
that some compositions of functions from Q belong to class Q£. A relation between functions from
these classes is established.

Key words and phrases: positive function, continuous function, several complex variables.
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Introduction

Introducing entire functions of bounded L-index in direction (see [1]) we have to impose
additional conditions to a continuous function L : Cnh — 3R+. We suppose that L € Qf (see
below (5)). It is necessary to establish criteria of boundedness of L-index in direction and to
apply L-index for solutions of partial differential equations or for entire functions with "plane”
zeros [3].

Such conditions describe a behavior of slice function L(z° + th), z° € C", t € C. It provides
that function L does not rapidly change as [] -» oo. In one-dimensional case Sheremeta M.M.
[5] used a class Q of positive continuous functions | = I(t), t € C, satisfying some additional
conditions. In fact, I(t) = In N\ I(t) = X\, a € 1R+ belong to Q.

It is interesting: what are examples of functions from Q£? To answer the question we con-
sider compositions of functions from Q. Thus, it is a natural question: how to build a function
L € QI by afunctionl e Q?

1 Preliminaries and denotations

Forn > 0,z = (zi,...,zn) €C”, b = (b\,... ,bn) € C"\{0} and a positive continuous
function L : C” —= 1R+ we define

M@ n) = inf{Aj (z to,n) :t0e C}, (n) = Inf[AN@Z, n) :z € Cn}, )

and
Aj(z, (. ,,)= sup ©)

© Bandura A.l., 2015
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A%(Z,n) = sup{A%(z,t0,q) :t0eC}, A%(n) = sup{A2(z,7) :z € C'1. 4
By Qf we denote the class of functions L, which for all n > 0 satisfy the condition
0 < A\(n) < A2(7) < + 00. (5)

For a positive continuous function /(f) for f € C and to € C, n > 0 we denote Ai(fo, tj) =
Aj*(0, to, n) and A2(fo,n) = A\(0,t0,n) inthecasez=0,b=1n—1 L= Zand

Ax(n) = inf{Ai(to,n) : t0 € C}, A2(n) = sup{A2(i0,n) :io €C}.

As in [5], by Q we denote the class of positive continuous functions /(f), f € C, which
satisfy the condition: 0 < Ar(%) < A2(//) < +o00 for all n > 0. In particular, Q = Q.

2 Elementary properties of functions from Q£

Investigating the properties of entire functions of bounded L-index in direction we obtained
following propositions about class QE£.

Lemmal ([1]). IfL € Q£, then L € Q$b for every ©€ C\{0}, and i/L € Qj™ and L € Q£2 then
1 e Qb!'+b2ioranybi,b2 € Cn.

For /7€ Q we denote
ZifH>) = (JIff + M+ DI(tw),12(t,w) = (N + 1)I(tw), At,w) = N\ + 1)I(tw),
where t,w € C.

Lemma 2 ([2]). If 1 € Q, fhen Vb € C2h € Q~ 2 € Q*, 3 € Q\2, where br = (1,0),
b2= (0,1).

For /7€ Q we denote U(z) = /(l(z m)]), wherez €C", mE Cn.
Lemma 3 ([4]). Ifl € Q, then /4 € Qf /orevery m € C" andeveryb €C".
For /e Q we denote Zs(z) = ZJz]),z € C".
Lemmad4 ([4]). IfleQ , then |5 € Qf foreveryb €C”.

It is easy to see that Lemmas 2, 3, 4 propose possible ways to construct a function L € Q£
by a function Z€ Q. Below we prove a generalization of Lemma 2 for C" (see Theorem 1).

Let L*(z) be a positive continuous function in C”. The denotation L x L* means that for
some 0i,02 € IR+, and for all z € C'! the inequalities 6\L(z) < L*(z) < 02L(z) hold.

Lemmab. IfLe Qf and L x L* then L* € Qf.

Proof. Using the definition of Q£, we have

inf L*(z + b) - 0]< L
zeC'f0eC  IL (z + fob) L*(z + fob)
o r OiL(z + fb) 7
> inf inf . . .
2Gc foec MIl@AL(2+frb)V It- ' ol£ 0iL(z + fob)J
| fw MIFI(S’\i4 I N>, ,0]< 7 )> o0,
02 zeC"t@AC IL(z + fob) 0iL(z-1-fob) J

because L € Q£. Besides,

f L*(z + fb) _ : 7 (
S Jg supi 1 Yy 2 T L, }

62 fL(z+ fb) . . n
= s K W + LW

|
< + 00.

Thus L* € QEf. O

3 M ain theorem

Now we prove several propositions that indicate ways of construction of functions from the
class Q£.

Theorem 1. Ifl € Q and inf{Z(f) : fE€C} = ¢ > 0, then L € Q£f, where

k-1
—-— H 3 1 /\ /\ 1 - —-—
1@ =J(i+E (Hinjzl N (N+1"D)"M12) aid 1) &

Proof Note that in the definition of it is required that inequality (5) holds for all n > 0.
But in view of (I)-(4) function A*(n) is nonincreasing and A\(n) is nondecreasing. So it is
sufficient to require in definition of Q£ that inequality (5) is true for all n > 1. Indeed let this
inequality holds for n* > 1. Then for all n such that0 < n < | < n* < +oo0, the following
inequalities hold A™(n) > A\(n*) > 0, A*(n) < Aj(n*) < +o0o. Thus inequality (5) holds for
all n > 0. Below we assume that n > 1.

Besides, we suppose that inf{Z(f) f€€} = 1 If this infimum does not equal 1, then we

can consider the function Ii\;), = {which this equalirgy hoIst.

. —, 1o
mf{Z(f) :tE€€

So we consider the case n > 1and inf{Z(f) : f € C} = 1. We shall prove that foralln > 1
the following inequalities hold

J9. ¥ T(1+E (WNTLY A 1 ([ +¥\+ TT)YLI  +¥))

[ ((1+ 226N O +¥°1 T1 iz + 20+ M) +69))):

F- Pl <

- — - B— N j >0
i+ £ M \g+ bjfin 1 (12/+ + \bj\))) z( N  + /0))_J
(£ [ e o T1(127% BF]+ oy 2(f16 )

W

and



n—2 n— n—2
] ) ) ] ) ) ) ] YI(zj+ bjt°) £j (zj+ bjt) - v[(zj+ bjt°) @i+ bjt) =v~[\zj + bjt\Non_1\N - t°\\zn+ bni\
supsupsupj (1+ £ (\bk\YI\zj+ bjt\ J~[ (\zj + bjt\ + \bj\))]I(YI(z]j + bjt 721 i=n 721 721
ze€" f°eC f | fc=l /=1 S=fc+l /=1

= M 27+ byi°] |bw-illE- i°] Izn+ bnt® + bn(t —*0)!
I+E(|frfcl T1lzz+ M°l  (z/+ V°l + N))); (110 @7+ M*°))) :

: 7-1
fc=lI /=1 [=*+1 /=1
ol 1 < J~[ R/+ bit\ \Xom-\\ X —i°] + M 27"t bjt°\ =i\ \g\ ¥ —t°\2
li- * < - 7 - 1 — TN 7T < °° 7’/\:nll 7=1
(1ap (BTN HN DL (Z3V0]+ 18 D) M@+ 1) ' :
(7) n M Mzi-+Vol IM-il
< -
k-1
For this end we use the fact that /€ Q. According to our choice inf{Z(i) :t€€} = land Sl|+ E SlN Mjz+6e/] T1 (Joy+6/1 + B 1))UT (z,+ 6/))
/A =1 T7=fcHl 7=1
it—+ n—2
(l + E (N Mg+ ¥l r'| (\gj + Hit\ + \bj\)’\l(f\(ZJ + hjt0)) > 1 N M \zj +bjto\\on-i\ \on\
Hence, we obtain that I+ fg:lglluclyrzll \g + bjt°\7:71:%+| (\g + b\ + \bj»))ai,(/gl(zj + bjt°
| f-fo] < - <n. (8) ||_|/ | 2+Vol IB'-11 + T \g+ bjtol \bn-i\ \bn
V7=1,7/n- 7=1
I+ X (\bk\n\zj + bjt°’\ _T1 / + bjt°\ + |b T( M ({#+ bjt° 4 <
s/ ]fc:|(v MINZ) + b 7=fc+I(IZ j [by1))) l(4;:1(1 ]

g\l+ E (|6Jt|nl|zj+ 6/] N (Jz+6/] + |6, |)); f(n(z,+6/))
) ) fe=I =1 7=fc+l 7=1
It remains to estimate the module For arbitrary k-th difference, 1 < k < n, of (9) we can obtain estimate

M(¢/ + bjt) - N, + bjt®) = I(MN ({7+ byo - (Z+ M°) N (Z+ ¥

71 = -1 /2 D@V @) T (re¥s) [, @+
k—1 s

+ f(zi+ M) (L +V )- N /+¥°)ll +V))H =N 1z/+ b&°] N 27+ bf] K |i-io]
7=2 7=1 7=3 (9) 7=1 7=fc+l

+ (M (T+¥°)Ne 7 +V)~Ne/Z +V°) M (z+¥)) w M 7+ bitON 1 \g+ bjt° + bj(t- t)\\bk\\t- iol
7=1 j—k 7=1 7=fc+l 7=1 /=fc+1

+ ((z7+ bnt) N (Z7+ bjt®) - N (Z-+ bl/i0)) |

<niz+¥°l N (Iz7+ ~e] % pf li—°Dloc] i —iol
7=1 /=1 7=1 7=fc+1
We estimate each of obtained n differences separately. In particular n-th difference can be WK\ n iz7+ bi°] 1 (\g + bit\ + \j\ri
estimated as < M 7=fcH
(I+ n(zz7+e6/1+16)- m \j+6/1)/(n(z;
@i+ M) T @7+ W) - n (z7+ bjte) = N 1Zj + bjtol b\ - iol
= = =t S/ nBlig +t/1 m (iz+ 6/1 + pd
A"npil¥j+ bjtollIM 1 7=fc+l
(I+% (MM py+6/] Mi(ly+6/1+ 16:D) (M (z+6/) (e T1 27 biet]+ o) - THU - B2j o+ biting 1 IT (27 bito

7=1 =1

Thus, returning to (9) and considering that < /M forall /,1 < ; < n, we obtain the

Applying the inequality (8) and using that n > 1, (n —I)-th differences can be estimated as following inequality



Y1(zj + bjt) - Y[(z] + bjt°)
j=1 j=1

iyn-*|b*] M1z + bjtor M (]2; + ba°] + \H\)

A /=1 /= 4+ 1

-* (i+ E (M /anJ + b/l =_f|f|MI(IZ+">>I + NI (Gi+v 0)

\bk\IM \zj+bjt>\ M (| + 6;i0]+ |6,])
/= /=fcH
<7"E
fc=i MM (¢/ + 6/i°
/=i
1

i+ ELi (ibfcl M1 Jz-+ bjfil n z/ + bjfii+ 1ij
gl /=1 | /—fc+I(I

|/£ N rl |z + b;i° n zy+ ty°

(i+ Et(M M JZ+ty°l M ,(14+ VO0l+ IM))) *(4 (z + bifi

< N
(n(r, +6))

Then foralln > 1

'i+ E (im T[IZ + 6. N r,+ M+ |b/Il tin ™ + bji

I E (o | I5/)) tjin,

inf inf inf

ZE€ckpee t A+ £ AN in’ 2 +k°] n (lzy+ 6f°] + |[b/1)) f(life + ty°
Y JdV ;=1 j=k+lI V=1

| f-f°] < ” 1
(n (¢, +ty»)) (I+j: (m MI* +»«<l n+i(]zZ/ + ty°l + M )))
fc1
c ,1+ E (M O Ni+M nmn (Jzz+M™M + N
> inf inf inf< -J - B\ —tu\< n
2C’ioeC f ~(1+ 40 (N M |z+ b/l ,O+1(¢+ bri°] + bji '’

(1(11(zj + ¥
X ir&f" tiong:ir%f -t e Yl(zj + bjt) - M (Z; + bjt°)
S L/( N (Z+ b/#O)) /=1 h 1 (N @ + b)) J
V=i v:=i

(10)

The first factor in the obtained inequality is a fractional rational expression with the same

degrees of the numerator and denominator by variable zj, and by t, t°, respectively. Thus the
corresponding infimum is not equal to zero. Suppose that the second expression equals zero.

Then there exists sequences (z?), (t°), for which

(n(zf+v .

¥ / 1 .,— ~T ML +¥%¥)-N ,p+yp) = "My £ —ees p-S00 0

LLn(rl+¥p) 7=1 i=1 i{n (zj+ bjto

Denoting up(t) = I (z? + bjt), and vp(t°) = [ (zP+ bjt0), we obtain that
/= |

[(UP(0) .u, m n / i Q
But
'nf{u_q,u_q, [ <T MW ] >YluWw T) m“-vi)l £
and infinfj j*j- : Im—WA < -w | = o, that contradicts the condition | € Q. Thus, the second

factor in (10) is also positive, so the inequality (6) is correct.
Using similar considerations, we can prove the similar inequality for sup. Indeed, for all

n > 1 the following inequalities hold

k-1
(l+t (N N |zz+ bf] M i(z/+ bt]l+ joy]))) /(4 (2 + iyi))

Sup sup sup

zee» f'ec |(|+ £ (J6trflZj+ b/l 1 (J&-+6/] + ]6,-]))i(N(, + 6-°
k=i4 /=i /=fc+i ;=1

I(nN@+r1,°)) (1+t(\h\ M |+ Dbfl n (z + 6,i»] + |b

(i+ eAiM M Z-+vi n+i(Jz-+ VI + N)))

< sup supsup < — - =
zeC'lf°eC Nl o ”A I2 n OI+
\Y A=l 4 /=1 [=fc+l
It- 1°] < 1
i+ E (im N y+bjt\ 1n (lz+b/j+ yl))) ]
fc=l 4 /=1 ;=fc+l vy
Am+¥)) n .
X SUP SUP SUP 7« ] r: N(2/+HBb- ML+ bit) - “Tli-ememeeeeeees rf
zectfoe T 5y 0 m oz + bjfi)) M i=1 (N (@Z+ &)

11



ta+ z (] njz-+ poa] 11 (jy+ il + [o7]) _
SUP SUP SUP < ~-roemmiibee e EL ko S — O

zeei’ec < I (i+ £ (Hninlzy + b/l M (J2/+ 21+ |*]))
4 fc=I v =1 =fc+l1

As above for infimum in the first brackets we obtain a fractional rational expression with
the same degrees of the numerator and denominator by zj, and by t, f° respectively. Hence
corresponding supremum does not equal infinity. Suppose that the second expression is equal
to infinity. Then there exist (z?), (%) with property

(ntf +ty))
sup - +bfi) < — raoo 2
1 1/ + > Ne )’ >:"’- LLI' ) M "';(%(Z,+b,f»))
4/=1 7 47=1 7

Denoting up(t) = M (zf + bjt), and vp@p) = M (z[ + bjt°p), we obtain

T K ()" Lp(?l s
But
T AI M LIJ Iu”<l) (13 \/p(lio)] - LL" LU' } - sl‘p : Iu [13 11l1® lS
and sup;,GCsupl( Jw, : W—A < = o0, that contradicts the condition | € Q. Thus, the

second factor in (11) is also positive, so the inequality (7) is valid. Hence, we deduce that the
function

}/i +fE_I(|bb|7q N 7_If_l I(\z|\+ Yi\)))l (7'[_! z

belongs to the class Q£. O

4 Remarks to Main Theorem

Remark 1. The condition inf{/(i) : t € C} = c¢c > 0 is not essential. In fact, every function
I € Q, which satisfies the equality inf{/(f) : t € C} = 0, can be replaced by the function
I(t) -f 1, which also belongs to the class Q.

Proof. Indeed, for the positive continuous function /(f) the inequality holds

iw < iw i< m +1 (12)

I((,) - /(to)+1 m {

where the right part istrue for all t,to € C, and the left partis true for all t, to € C such that

/(f) < I(to). The right inequality is equivalent to the following

I(to)(I(t) + 1) < (I(t) + I(to))(I(to) + 1) or I(to)l(t) + I(to) < I(t)lI(to)+ 12(to)+1(t)+ I(to),

i. e. 0 < 12(to) + I(t). But this inequality holds for the function /(f) for all f, 10 € C.
From the left part we similarly obtain I(t)I(to) + I(t) < I(to)(I(t) + 1). Hence /(f) < /(io)-
Evaluating the supremum for the right part of inequality (12) and the infimum for the left
side and using that I(t) € Q, we obtain

O<infi w :|f- 'of£ T ‘ecl -* (m :U1_'ds w T T'lec}
56up{uw Tr:i'-((~1IMTIT"'eC}
-sup(m +1:,,~tol-T M TrtecC}
These inequalities imply /(f) + 1 € Q. O

Remark 2. In fact, analysis of the proof of Theorem 1 indicates that we can somehow de-
crease function L. For each b = (b\,b2/.mbn) € C", such thatl'i/=1 /A /7 0,! 6 Q and
inf{Z(f) : 16 C} = c> 0, wehave L € Qf, where

LA=HLORYNA I (\+\i

The appearance of term 1 in the proofof Theorem 1 is necessary forlower estimate of the

n k—1 n \j
s [\h\ M\ I (Izj F \6jY)) Zwherej =1,2,... ,n. We can take the direction
*=1 7=1  j=k+I :

_ fn n
b= b /T \Y\instead of b under the previous condition I Ilbyl®0, because by Lemma 1 the
/| 7=1 7=1

function L belongs to the class Q, with ©= 1

bi
Then all considerations of previous theorem should be repeated, omitting the term 1 in the

appropriate places. Alternatively we can take a larger function.

Remark 3. IfI* € Q, | €Q, inf{Z(f) : f € C} = ¢ > 0, and for all z €C” the following
inequalities hold

r(n z5) >* (v + = NI N M (z71+ Ifyl
(7:1 ) (\ fc:I( 7=1 7:fc+l( Y));

and

" (M <)+ 7)-M1Zp°

then L € Qf, whereL(z) = - ~(Lr~/"~4ry), b = (bLb2...,bn),c1> 0,c2> 0.
c 7=1 7=1



Proof. Without loss of generality, we may suppose inf{Z(f) : t € C} = 1asin Theorem 1. Then

we can repeat the considerations of this theorem, taking everywhere the function 1= ( 'l zj)

/=1
instead of
k-1
i+EONinw T (1Zl+ N)):
fe=1 /=1 y=fc+l
Therefore we obtain
a / k-t
E (N M Eg+bicl. N0 (1z7+ byl + &
. . " . HK=1V =i j=k+I
Y[(zj + bjt) —T 1(Z + bjto) <
1 =1 mim{l,c?}/*( MN(Z; + b/))72( ngzy + b/t°))
y=i /=
<
min{ci,c5f+1}/( M (zy + bjt0)
VEi
Denoting ¢ = min{ci,c"+1}, for all > 1 we obtain the following inequality
- ( [z + byo)1( TT @@y + bjt)
. s /=i 7 v/=i
inf inf inf
zeC” fOeC f " . . L. L
0N + bjt°))i( fi(zj + bjfi
(1@ bit)iC fizj + bifi)) _
!.(/Ltlfy + »/))7<( ;rzllfy + &/
(M@j+ by
> inf inf inf = M(+¥) - No/ +bil) <
» fo ) - NN / n
zeC” f°€C t ( I_I(2/+ kMED)) 7:1 J:\ c II(Tﬂ((;Zj + bjto
/=1 /=1
(M@ +byO
X inf inf infi YI(zj + bjt) - YI(Z + bjt0) <
zeC" f°eC t I/(n(z’+b/)) /=1 /=1 cl + bth
i=i
(13)

Since I1(t) € Q, by similar considerations as in Theorem 1 it can be showed that the product in
(13) is greater than zero. It is obviously that we can prove

, Kn(z,+b0)'in(z; +"/
j~i ~V/-l
Sup sup sup B

2eCTFGC 11 /(A (2(+b/)) /N (z + &f0))

In view of (13), (14) we obtain that the function I*~ 2y 1™ Zy) belongs to the class QE. O
y=i A\
Remark 4. We can take the following functions

MNUzI+N)“01Z1  or S OOBK\ FINZ)\ + b

j=1 7=1 *=1 7=1
[0
n . k—t ] .
instead of the expression  «+ N M N T (Jz71 + \B\)) in Theorem 1
k=1 7=1 y=fcH

It follows from Lemma 5 and notion

i+nw+Ilb/D-m”"™+1L (NI‘ISIZ/MM))X'HZ(N nizirn (M+N)):
7=1 7=1 fc=1 7= fec=1 7=1 =fc+l

Propositioni. IfL € Q£, then foreveryz®° € C” wehavelzo€ Q (Zo(f) ¢ L(z° + ib)).
Proof. We remark that (1)-(5) imply forevery z° €C", i EC
V7 > 00c< (Z,n) < A\(Z,10n) < 1 < A2(Z,i0,i/) < A\{Z,n) < +oo0.

These inequalities imply that Iz0 € Q. O
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ON CONVERGENCE OF (2,1,..., )-PERIODIC BRANCHED CONTINUED
FRACTION OF THE SPECIAL FORM

(2,1,..., I)-periodic branched continued fraction of the special form is defined. Conditions of
convergence are established for 2-periodic continued fraction and (2,1,..., I)-periodic branched
continued fraction of the special form. Truncation error bounds are estimated for these fractions
under additional conditions.
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Introduction

Periodic continued fractions are an important subclass of continued fractions

£2 ak " Al a2\
bo+ D —= o H--------moo-- —bo~l- jT-+ jT-+ ..., ()]
k=\bk @® \h 102
v r—

where aubo, hi € C; i> 1. A fraction (1) is called p-periodic, if its elements satisfy thefollowing
conditions: apntk = akand bpntk = bk, n > 0; 1 < k< p;p € N.L. Euler, D. Bernoulli,

E. Kahl, E.Galios, A. Pringsheim, W. Leighton, O. Perron, R. Lane, H. Wall, W. Jones, W. Thron,

H.Waadeland, L. Loretzen, A. F.Beardon etc. investigated p-periodic fractions. The reviews
of corresponding results can be found in [5-7]. It is known (see [5, p. 181]), that the set

Q={z€C:larg(z+ 1/4)|< n} 2
is the convergence set of the 1-periodic continued fraction
1+ 7N-+7-+ &

Moreover, attracting and repelling fixed points of the linear fractional transformation t(co) =
1 + c/w are the points

x= (L+>/1+4c)/2, y= (1- VI +4c)/2. 4
In [5, p. 49] it is proved that the the following relations are valid for the fraction (3)
rnt2 _ 1n+2 Yn+l_ 1n+l p
2 e = e — 1 e~ =
v yv- , % 9 i n >nAOOQr1],I|m X. (5)

@ Bodnar D.I1.,, Bubniak M.M., 2015

1 Main Results

We consider the branched continued fraction (BCF) of the special form

@ **1 a-n\

1+D E t - 6>
k=1/*=1

where a™k\€ C,i(k) € X, 1 isasetof multiindex,J = {i\i2-..ik:1< ™ < ik=\"k> 1;i0 = N},
N is a fixed natural number. Some results according to these BCF are in [3,4].
Continued fraction

»tu«-) (L+6 N
\ 9=1

where i(m) € X, im —im+q = r,q > 1, is called the i(m)-th branch of the r-th order of BCF (6).

Definition. A fraction (6) is called p -periodic branched continued fraction of the special

form, where ~y = {p\,p2, mmpu), Pj € N,; = 1, N, ifall i(m)-th branches are the identical
Pim-periodic continued fraction for each fixed im.

Let BCF (6) be a ~-periodic fraction. Than its elements satisfy the following conditions

=aL”S or Umr..r — @)
q S q S

whereg > 1;g=nmr+s,r—1N;s= 1prrm> 1 i(m) €1;r < imn > 0. Each i(m)-th
branch of the r-th order is called the r-th branch of such fraction.
We introduce the notation ar... r = clBfor elements of the fraction (6). Then ~-periodic

BCF can be written as follows

0 Ik-\ n
1I+DE T -
k=1ik=1
We investigate the convergence of (2,1, ..., I)-periodic BCF with N branches
. c]l c21
In 1 r]----------%-c-i42— b Ci 1 (iz rl]- I 1.
1+ — aj— 1+ L, 1+ - W — + c2)
+- +t, | r , ) Q)
. C\ 2 i Cl1 C9a1 ' » Cil c21 Cm1
1+, —— I+ -— + - — 1+~ -+~ Ao+t '
1+.. 1+ . 1+ . 1+.. 1+.. 1+..

For this we define tails of -periodic BCF (8) with initial conditions: RgI™ — 1, g — 1, N,
1 <j < n,n>1,and the recurrence relations

ni Os I</s<’Pb
"-1 (10)
iy 4 . 1 M i 1 xii/ -
Rn =1+ Lk=l + (gqs+tiy 4= N;1- S-

n—1 Kn-1
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wheren > 1pg € N, g = LN. Then Rfg]) = RS and Rft’m) = R{~U) + cqm/R~AT ™"
n>1l,g—I,N1l<j<n, <m<pqg-1, pgebi.

Thus, the n-th approximants of BCF (8) are equaltoFn= R~ n> 1, Fo= 1
For investigation of truncation error bounds of the fraction (8) we have used a formula for
n > 0, m > 0, that had been proved in [1], such as

*,1 %12 *21 *NL

r _r _ V- JA V JA .-
tn+m rn I, I+1) r-rkv  ( n(N,I) n(N,lY
k€|'§,’)i)1
where 1™t = { k — (fci,fc2, ---4nr) K\ = KNA+ K\i2 A > 0; | = 1, —w+ 1},
U=n- Zii+tkt;, RN =1,q9g=1/N,/= LjV pt = 2,ft = ... = pn = b krsis defined
in [3]. Now we consider the 2-periodic continued fraction
a bl a b
L+ T+ T+ Al ()

Let A= 1+a+band A ¢ 0. According to [5, Theorems 2.19, 2.20], [6, Theorem 1.6] we
have that the even part and the odd part of the fraction (12) are equal to

/ 00 r \ ~-7" 00 r
I+a(l+btUr) . I+aHll
respectively, where ck = -ab, dk = 1+ a+ b. Next, let Pv, Qv be the v-th nominator and the
v-th denominator of 1-periodic continued fraction

----- oo, v> 1. (13)

Then, according to formulas (5), we have fork > 0

yk+2 _ yicr2 S*+| —
= — ~ , = — - ~ >
X-y X-y
where x — (1 + /I —Aab/A2)/2,y = (1 —y ! —4pb/A2) /2.
/\ Whs—
Let/ ,=1+ fD Tbe the s-th tail of the fraction (12),n > 1,1 < s < n, where /11 —
[o=3
axk —b,k > 1. Then the following formulas
fw _ AN -1 »>0 > = ~°/+1Q-+ AP- v>o0 ,=12

N -» A-1 + AP, VU /2-+1 Qv ' -
are valid for the 1-st and 2-nd tails of 2-periodic continued fraction (12).

Lemma. Let the elements of 2-periodic fraction (12) satisfy the condition —ab/A2 € Q, where
A=1l+a+b A @ 0,and Q is defined by formula (2). Then:

1 the fraction (12) converges to value x = (1 + a —b + AVI —\ab/ A2) /2,

2. iff2kN\N P 0, k> 0,j —1,2, and \—a+ \Pk/Q k\> £\ > 0, k > 0, then truncation error
bounds are valid

fn-x\< Cg™~W, n>0, (14)
1- y/1- 4ab/\2 A , -
where g Y <1¢C HIAI +<')ZmaxJI Alez = 0\+ |JAM,
1+ V1- lab/A2 (i-i)2

M=\x\(l + q2)/(1-q),x = (1+ VI - 43b/A2)/2.

Proof Letc ——ab/A 2. Since ¢ € Q, then 1-periodic continued fraction (13) converges and its
value is x, moreover Y\ > WA\ Next, since A ¢ 0, then Vli_r>r010f2v+\ —\I'}'_rRDfZV = X. From this it
follows that the fraction (12) converges and ,!'Lrgof n= x

Since ¢ € Q, all approximants of the fraction (13) are not equal to zero. It follows that

fin 9°0,n> 1j = 1,2 Forn > l1and m > 1 we estimate the difference \fn+2m —fn Jusing
_ Pk MR L —yixke2 _
formula (11). By virtue of - for k > 0 the following
Qk t o+ 1—(y/x)k+1
Pk/Qk1< M, where p = |x](I - q), and |-
Let n and k be arbitrary natural numbers, moreovern = 2r+ 1L,k = r+ m,r > 0, m >0.
Then

_ a r+l |fejr
I/2+i - hr+\ | |rg2) M _
M 21 (\J2k-29+2\\J2k- 23+1 U/ 2r+1-2<j+1 U/ 2r+I-2q 1)
r+1 )
TT rQ) r(1) e Pk-1 Y AEE (i-9)
ql:]r J2(k=q+1)J 2(k—a)+1 -bQk-r + APk~, (1 +q)£2
r+1

g_-'i-l FAD o 1) D —q)+1 Ar IP—1> Ar |X|r|_-Z|_I4

From this, we have

(ab/A2)r+1 |A( —q)7 r+1+ Ly ko+ )2 A

1/2A1 - [2r+11< K2r(l + q)2M Um2r+1 (1 _ a)2jy[ c

where Ci = JA]IXI(I + ™27 ((1 - g)2M).
Let n and k be arbitrary natural numbers, moreovern = 2r+ 1L, k=r+ m,r > 0, m > 0.
Then, by analogy we have

I\ (1 + )7 AW\ + )2
1/2x - j2rl< =C C2
r\er~1 (I —")2¢2 (1-q)2A
Finally, we obtain truncation error bounds (14) for m —00. L]

Now we consider the linear fractional transformation

Hev) —1 + Ch

(15)
1+
Let Xi be the attracting fixed point of this transformation, Xj, Yj be the attracting and repelling
fixed points of tj(w) = X;_1+ Go/w, j = 2, N. Itis known in [5, p. 190], that
X, = (A-2c2+A\/ -~/ A >)

0?J ZSPM



Theorem. Lety = -CigCig/A2, A= 1+cu + cIZ AN\ 0, p € Qx, where Q1 is defined by the
formula (2), and let the elements of the fraction (9) satisfy the following conditions Gpg € Q;/
J = 2,N,where Q;-= {z €C : Jarg(z + X?_1/4] < n}. Then:

L the fraction (9) converges and its valueis F = X\r;

2. moreover, ifR2,+1 ™0,n > 0,; = 1,2; |—Cig + AP5/Qk\> £i > 0 > 1,

I /-1
cr\< 7H rP i=2N, 7)
fc=I
1 ~Puel
where N\ éi i Pi)2£2 vity VK — (1 + dk)/2/<4 — \A —4|c"al/ ot |

k=27N,x = (1+ y/1- 4cucu /A2)/2/¢2 = |2+ JAIIXIA + p2)/ (I - pi), then for
n > 1 fhe truncation error bounds are valid

N—1 (Ypil+l-p ,;+1

W—RA<Lm (18)
N+ n-1 pi/p-ypT
. 1 - \/l —4cigcipg/ A2 1
where pi =
1+ \/I —4cigCig/ A2
/ X2 . _
/1+pIN B2 max <, >if = mm < L =P wj=2N.
1—Pi/ P PjTIM=1Vin 2€2
Proof. By induction on ¥we prove the convergence of the sequence {R,Sﬁn}“zl, q—1, N.
For i? = 1the convergence of the sequence }“=1 follows from Lemma, i.e. nli_rpgoR,(,w —

Xi, where Xi is defined by the formula (16). By induction hypothesis the following relations
limy-oR ~ = Xk Xk @ 0,Yk ® 0, hold for g = k, where 2 < k < N - 1. We write R)MQ for
q —k + 1 and for the arbitrary natural n as follows
cfcH,i |
R+1A _ dwW) . Crifl o
R,_. IK
cfcH |1/Xic
1+ a;
and from (C) of the [5, Theorem 4.13] we have, that H RM+1'~ = Xk+\ where Xk+1 = -y k+i
and yk+\is the repelling fixed point of f+i (oj). Next, since gt+ig ¢ 0, then Xk+\ ¢ 0, Yk+1 @ O.
Hence, Iirrauf,, = XX.

Let k and m be arbitrary integer numbersand 1 < k < m, m > 1, k = [K\/2], where k\ is
(172)

Since Gerig € Q/+1, the linear fractional transformation tk+i(co) = is loxodromic

defined by the formula (11). By virtue of A@ 0, R,, and R(U) = fph],n> 1, we have
—CcigQv + APV (I~Pi)Ei
R(Iﬂ) R SIALF >
1o 3 1A rQierapy s M e

where v = (m + I\)/2 — and Nis defined by formula (11). Ifv — (Wi -fl —h)/2 —j, then

(112) cu Qv mmAPv
Mn R2v+| Rglll) >|Al* ClLI N
M 1Qv-k Py—k

Next, we have

k KinCi: A 17 kinCigl/A2

orm/i-2- AR 30 "G5 | 2l s A2 = M

Moreover, according to Lemma the inequality |r],~ |> Wholds.

Let n be arbitrary natural number. By induction on g we prove that the following inequali-
ties are valid

\ROO\>YIvj, gq=2N. (19)
/=1

For g = 2 we can write the tail R(2M ith the form

|RH_J i Rbl/l)

where for r = 2 and

i A - (-1,1). : D
nro) _ ’\J'_rr/I‘/ 7 |/|)p|(/|r_11,£D|| rr/l‘/ nr—lml}l?n[;-ZL + + Cr_I/Rir :}#')Rg--y--)-JZO)

From [2, Lemma 2] it follows: if elements of the reversed fractions hf121), n > 1, satisfy the
condition Ja,] < KW < 1/4, then the inequality pl2¥Y > V2 holds. From this we have

] 211 1 A21)

. . . . @!l) .
ol n(M <=5 < 4Thus the inequality | |> v2is valid. Moreover, |R, " |> igl2:

By induction hypothesis the inequalities (19) hold for g = s, where 3 < s < N —1 We
write Ri,?1) for ¢ = s+ 1 as follows

R(S+1’1) _ R(s,) , Cc+UIl = , Cr+1401  R(s\I), (s+1,1) 1
(S+1,1)

R0

where /Z£+1]0) is reversed continued fraction, that is defined by the formula (20). Its elements

cs+1,1
OGS

moreover, the following relations Told

satisfy the conditions < \:-"'" < j, T —vj. Thus, we have Uis+11)j > vs+\

n;=in

s+1

RO R K 1A\ > A .

7=1

To prove the inequality (18) we have to estimate the following relations



where Kj is defined by the formula (11). Since for the arbitrary natural n

M MKUATI 1 =B

i M n)Ne \ vf (1+rf*)2 Y

thenforn>1and m>1

(1

(2]

(3]

[4]

(5]

(6]
(7]

IF , -F ] <r>V 2~ <1 .i T (VW)"+1 ~P"+1

Finally, we obtain the truncation error bounds (18) for m —amoo. O
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THE BARGMANN TYPE REDUCTION FOR SOME LAX INTEGRABLE
TWO-DIMENSIONAL GENERALIZATION OF THE RELATIVISTIC TODA LATTICE

The possibility ofapplying the method of reducing upon finite-dimensional invariant subspaces,
generated by the eigenvalues of the associated spectral problem, to some two-dimensional genera-
lization of the relativistic Toda lattice with the triple matrix Lax type linearization is investigated.
The Hamiltonian property and Lax-Liouville integrability of the vector fields, given by this system,
on the invariant subspace related with the Bargmann type reduction are found out.

Key words and phrases: relativistic Toda lattice, triple Lax type linearization, invariant reduction,
symplectic structure, Liouville integrability.
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Introduction

By use of the different Lie-algebraic approaches the Lax integrable (2 + 1)-dimensional
nonlinear differential-difference systems given on functional manifolds of one discrete and
one continuous independent variables have been obtained in [4], [10], [16], [26], [27]. The sys-
tems represented in the papers [10], [16], [26], [27] possess the triple Lax type linearizations
and infinite sequences of local conservation laws. The (2 + 1)-dimensional nonlinear dynam-
ical systems with such type properties on functional manifolds of two continuous indepen-
dent variables have been investigated by means of the invariant reduction technique in the pa-
per [14]. In this connection it is interesting to know whether the invariant reduction technique
can be applied to the Lax integrable (2 + 1)-dimensional differential-difference systems ob-
tained in [10], [16], [26], [27]. The reductions of the (1 + 1)-dimensional nonlinear differential-
difference systems with the matrix Lax representations upon the finite-dimensional invariant
subspaces generated by the critical points of the related local conservation laws and the asso-
ciated spectral problem eigenvalues, have been considered in [13].

The aim of the present paper is to investigate the applicability of the invariant reduction
technique to the (2 + 1)-dimensional differential-difference systems with the triple matrix Lax
type linearizations, which can be obtained by means of two so called eigenfunction symme-
tries related with the same eigenvalue of the corresponding spectral problem (see [10]). This
research is based on the approach to the study of the finite-dimensional invariant reductions
for the (1 + 1)-dimensional nonlinear dynamical systems, possessing the matrix Lax type rep-
resentations [6], [11], [23], and their superanalogs with the same properties, which has been
devised in the papers [2], [8], [9], [11], [22], [21]. In the framework of such approach the exact
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symplectic structure on the invariant subspace can be found by means of the Gelfand-Dikii
type relationship [5], [19] for the differential of the related Lagrangian function on a suitably
extended phase space. The discrete analog of the Gelfand-Dikii relationship has been consid-
ered in [18], [19], [20].

In the present article the approach mentioned above is used to study the Bargmann type
reduction [14] of the Lax integrable two-dimensional generalization of the relativistic Toda
lattice [25], which has been constructed in [10].

The paper is organized in the following way. Section 1 contains the triple matrix Lax type
linearization for this (2 + 1)-dimensional differential-difference system that will be used in fur-
ther investigations. In section 2 we establish the existence of an exact symplectic structure on
the Bargmann type invariant subspace by means of the discrete analog of the Gelfand-Dikii re-
lationship as well as the Hamiltonian representations for the reduced commuting vector fields
given by the system. In section 3, basing on the differential-geometric properties of the trace
gradient for the monodromy matrix of the associated periodic matrix linear spectral problem,
we obtain the corresponding Lax representations for the reduced vector fields. The complete
set of the functionally independent conservation laws which are involutive with respect to the
corresponding Poisson bracket and as a consequence ensure the Liouville integrability [1], [17]
of the reduced vector fields is also found.

1 The triple matrix Lax type linearization for the two-dimensional

GENERALIZATION OF THE RELATIVISTIC TODA LATTICE

In the paper [10] we have constructed the set of the hierarchies of the eigenfunction sym-
metries

dHdxsm= —Ms» 1], dfj/dtsjn = (—Mf,, + 4 L, , df*/dTsm= (M2, - & )*/*, (1)

which are additional homogeneous symmetries of the Lax type hierarchy on the extended dual
space to the Lie algebra [3] of Laurent series by the usual shift operator £

di/dts = [Is, 1], dfj/dts = Isfj, dff/dts = - (1g)*f*, @)
where | := £ + Lj=JjE(E - 1)-1///F= (/6/2e IR [ 1fi s )T EM 2R,

M2R:

{g:9(n) €ECR gn+q)=g(n),n€Z} ij6N,

M :

eV/»)(E -
/30

sin is the Kronecker symbol, ;, m = 1, R, and the lower index "+" denotes a projection of the
corresponding operator on the Lie subalgebra of power series, tm, BTIE€ 1R s € N. Here any
operator A* is assumed to be adjoint to the super-integro-differential one A with respect to
the scalar product

*7y) = r1Zez!/(” Ne )'

wherey, z € ”2(Z;C), n € Z. In the paper the line over any variable denotes the complex
conjugation of this variable.

In the case of R = 1and s = 2 the evolutions of the functions describe the relativistic Toda
lattice.

The vector fields (2) have been considered as the Hamiltonian flows generated by the
Casimir functionals

7s=-L - X resls+1[i{n)], s €Z+, 3)
=0
where the symbol "res” denotes the coefficient at £° in the expansion of the corresponding
operator, and Poisson structure found in [10]. In that paper the hierarchies (3) have been es-
tablished to be Hamiltonian with respect to the natural powers of some different eigenvalues
of the associated spectral problem and Poisson structure mentioned above. It has been shown
also that foreachj = 1, N the first eigenfunction symmetry and any other which belong both to
the hierarchy related with the same eigenvalue can be applied to construct (2+1)-dimensional
differential-difference systems with the triple matrix Lax linearizations. These systems have
been obtained by introducing some new functions which denote the expressions with inverse
operator to the difference one into the equations of the eigenfunction symmetries.
In the present paper we consider two additional homogeneous symmetries for the Lax type
hierarchy (2) such that

dfj/dT = (=M \+5[Dfjr dfj/dr = (M \-6[iyf] 4
and
dfj/dT = (/+ —m \+ d[I2)f}, df*/dT = (-12 + M2-0[12)*f*, (5)

where r := Tig and d/dT d/dt2 + Tig, in the case of R — 2. The vector fields d/dx and
d/dT are commuting because of the relation

dil/dr = [/+ M}]+ (6)

where /+ = £2+ wif + w0, W\ := (£P) + P, w0 := P2+ E/=i(£//)// + fj{£E~1f*)) and

The dynamical systems (4), (5) and commutability condition (6) are written as

AW
72,,

(E/i) + Pfi + ® -AT = - PZi+m ft),
-ah, fiT=-(Eu)/i,

/it — /Tt + (E2/1) + wl(EFf\) + Ho/i + 2(/Zi(E Wi i+ wi)li,

fu = -firt- (£“2/1) - - wofl - 2(/ZI(E£-/1) +

K, T = ii"lfl i+ U>i(E/2) + KD/2 - ahr + I'r/l, (8)
fir = -(£-n7) - (e~"0(e-1B) - *>B+ «4r - »i,

€-iu=hfi, (¢-1o=/Tr,

(E2N)/i -7 i (E"2/0) + ~N(E/i)/i*

(PfiH Sfi) - m € -"fi).

«l,T



where u, i are some ij-periodical complex-valued functions. The dynamical system (8) and
relationships (9) describe the Lax integrable (2+1)-dimensional differential-difference system
[10], which can be considered as some two-dimensional generalization of the relativistic Toda
lattice.
Its triple Lax type linearization [10] is formed by the spectral relationship
ly = Ay, (10)
wherey € £r(”;C), J1 € C is a spectral parameter, and evolution equations
dy/at = -M\y, (11)
dy/dT ={I12 -M\)y. (12)

The corresponding adjoint spectral relationship and adjoint evolutions take following forms:

rz- Az (13)
dz/dx = M]*z, (14)
dz/dT = -{12 -M\)*z, (15)

where £ —£~1 —E/=i(//(£ —I)-1//)- The spectral relationships (10) and (13) have the equiv-
alent matrix forms
£Y = AY, (16)
£E~N = (£-1AT)Z, ()]

where Y, Z € £2(Z;C3),Y = {y\\y2,y3)T, ¥3:= ¥-2 = ((1,{2,{3)1,¢3:= (E-10), A= A[E N

and
/ 10 f*

A= 0 1 /?
V-/i -h A-P
The corresponding evolutions are written as
dy/dT = BAY, dZ/dx = -(BM)TZ, (18)
dy/dT = B~Y, dZ/dT = -(B™)TZ, (19)

where BM := B(T)[f;A], B(T) := B(T[f. A], and

/-A o (i-UN
B()= ,,-w 0 0
V-f\ 0 0
/ A2 —nii— AD —iT— 2N(E-"/F)-1h (E-U/2)+ N
“2/(E_L/0) -/ 2(£"71) +2 (i, P)(i-1/*+
+2(£-23)
B (T —AU —MT— ni— N(E-U/2) + L(E-V/¥)+
-M e -"fi) +(E-A)+

+(£-1P)(£-19)

- 214 - K/2 —JUr —ii— A+ 2/i(i" */T)+
-2(E/ ,)-2P/i -(O L4 -P/2 +/2(£-,710)

The matrices BiT) and B!T) satisfy the compatibility conditions

dA/dr = (EB~)A - ABA\ (20)
MAZdT = {EB~)A - ABAT\ 1)

The system (8)-(9) possesses the infinite sequence of the local conservation laws (3).

2 The symplectic structure on some invariant subspace

We will study below the differential-geometric properties of the commuting vector fields

d/dx and d/dT on their common invariant finite-dimensional subspace C A4 such as
q-1 N
MMN={f EM4: gradCN[i(n)] = 0}, CN:= £ XN[fw)] = -70 + Z~"A-,
n=0 i=1
where 70 = E”™=0 E/=i (nP>A-€C,i = 1, N, are different eigenvalues of the periodic

spectral problem (16) with the corresponding eigenvectors Y, = (yu, y2i, ¥3n)T € W and adjoint
eigenvectors Z- = ({1¢,02,-,3)T € W, W = {a = (#i,92,93)T = a(n) € C3, a(n+q) =
a(n+q), n€Z} C £2(Z<C), and ¢c- € C \ {0}, i = 1, N, are some fixed constants, which will

be chosen later. Here the eigenvalues A- € C, i — 1, N, are considered as smooth by Frechet
functionals onM 4.

We will first analyze the differential-geometric structure of the invariant subspace C
M 4. To describe this subspace explicitly we will find the gradients of the eigenvalues A €
V(M4),i = hN.

Because of the relations

EgSY i((N)T(EZ,-(n)) = ZO(A [i{n);AilYi(n))t (eZi(n)), i= 1N, (22)
n= n=

that follow from the spectral problem (16), we can derive the explicit form of the gradient of
the eigenvalue A for any i = 1, N only on the level surface {(f,¥,Z)T € X/4: Lj —at, 4- €
C\{0}} of the functional L  —En=0 ¥3i(n)(~23i(n))> which is invariant with respect to the
vector fields d/dx and d/dT. Thus, for any i — 1, N the gradient of the eigenvalue A: on this
level surface is written as

( 3N J3/X\ ( i}Ysi(Eisi) + Yu(£isi) \
grad A 5\_i/5f2 1TYsi{Ei3i) + Y2i(£i3i)
0AI/d/1 F [iYsi(Ersi) - Y3i(E*ii)
\ OAi/ Ofl ) V ky3i(£*3i) -Y 3i(812i)

where Yi = {yii,y2i,y3i)T, Z- = ({1,{2,{3F)T,i= 1,N.

Let us choose ai = —u i — 1, N, and investigate the vector fields d/dx and d/dT on the
invariant finite-dimensional subspace M fj f|Hc C M 4 given by the following Bargmann type
constraints

Ma&THC= (A(€M4:pfi = - E ysiiii, Ph = - YjY3&2l,

Pfl = Ly~3u pft = Ey 2i23i),
"o pitE By A



where Hc .= {(f,Y,Z)TE€MA4: U = -c,-, cf€ C\{0}, i = 1, N} is a common level surface
of the invariant functionals p-, i = 1, N, in the extended phase space M 4 := M 4 x W2N of
the coupled dynamical systems (8), (9), (18) and (19) with the parameter A € {A1, /\2,..., AN},
and ¥ = (Yi,Y2,---/A"n)T/-Z = (Zi,22,...,Zjw)t, Z, = £Z, = (I, 223)T, i = 1,N,
p = 1- W/AB,;. This invariant subspace can be described by means of the equivalent
relationships

r N N
MffMH=\fEM4: /1l =- 3 WA, [2=-E 3z

I f=i (23)
N N v '

£“7Ti = E vy i = E3nurs,-}/
i=l i=1 J

From (23) it follows that the functions /1, /72, £ Vi /£ V2 are expressed via the coordinates
of the eigenvectors Y, and Z,, i = 1, N, on the invariant subspace M fj f] Hc. The relation

N N N
E M@=V EYRi=7 - 1)E Y=
= = =
N N
ME (y 2i2/- Yi/Zi) = - E Ni2eli- /i(E-1/5Y

i=1 1=1

N N
i E(Y2i2i- Yi/2) = E Aaif+ L (E_ LTV
_N I_N N
WE (yii'zli —Y2i22i) = ~E (Y2072 —AYii2li)
i=1 i=1 i=1
+ + (E-\E) E ANe fi + 2/1E A~3]I

=1 =1

+ [i(E~ 1O E(yi/2« - y2i22i) - (E:-1P)(™-1/2)/],
1=1
N N N
WT E(Y2r'22i - Yii2li) = E N?Yii22x+ WE (% 1 i21i * AiY2i22i) (24)
i=1 1=1 i=1

S WC-/IN-UM) +/2(E-V2)) + (A_I/T)E AN 2i-A E ANe 31
i=1 i

i=1

- 2(£_1/TY E(yii'Zi + Y2%22i - 2y3.23i) - 2(£-1P)(E“1/T)/2/
1=1

N N

e/1 = - E Avaeti+ 1 E (li - izsi) - pri,
i=I i=l
N N

£/2= - E N/YE2i+ /2 E (Y2i22i - Y3i23i) - P/2,

obtained with taking into account the equations (8), (9), spectral problems (16), (17) and evo-
lutions (23), allow to express the entries of the matrices BT[f;A] and BT[f;A], reduced upon
M fj n Hc, via the coordinates of the eigenvectors ¥, and Z,, i = 1, N. In addition, from the
spectral problems (16),(17) and evolutionequations (23), when A €A\, A2, ..., Aar} we have

d 3 d 3 d N . d N__.
—ZE\)’X‘Z‘*= °Jr E_Iy'“z>K=O' TIEMZQ N El_)é|23| =0

—_

Therefore, we are in a position to formulate the following theorem.

Theorem 1. The commuting vector fields d/dr and d/dT, given by ihe system (8)-(9), allow
the invariant reductions upon the finite-dimensional subspaces Mfjfl[Hc C M4, N € N.
These subspaces are diffeomorphic to the finite-dimensional space M jr, which is smoothly
embedded into the space RA@Vand endowed with the Poisson bracket {., -} (2/being the Dirac

reduction of the Poisson bracket {., -}®<) related with the symplectic structure

w

N N 3

~@ = E E d(E~12si) Adysi = E E dzsin dwU (25)
1=1 s=I 1=1s=l

where "A"is a symbol of the exterior product on the Grassmann algebra of differential forms

on C6N. The reduced vector fields d/dr and d/dT, given by the equations (18) and (19) when

A€ {Ai, Ar,...,Av}, are Hamiltonian with respect to the Poisson bracket {.,.} (9. The corre-

rn
sponding Hamiltonians h(T\ € C°°(IRBN;R) are reductions of the functioWs Y\ h(T) €
D(jCi4), satisfying the equalities

di/at,dy/dr,dZ/at)T, gradC iy, —-{£ - D"\ (26)

((di/dT,dy/dT,dZ/dT)T, grad CN[i, ¥, Z}* = (27)

where the brackets (, ) denote the standard scalar product on C6élv+, and involutive with
respect to the Poisson bracket {., .}w@). The relationships (23) describe all periodic and quasi-
periodic solutions of the system (8), (9) on the subspaces A4fj fl HON € N.

Proof. The exact symplectic structure on the invariant subspace M fj C M 4 can be found by
means of the discrete analog [18], [19], [20] of the Gelfand-Dikii relationship on the functional
manifold M 4 in the same manner as has been done in the paper [19] for the subspaces of
critical points of local conservation laws.

To make use this relationship we need the explicit forms of the smooth by Frechet function-

als A, i —1, N, on Hc. From the equalities (22) we have
<7-1 /| 3
AN= E  E(Ey*in))2«(n) - y\i{n)zxi(n) - y2i{n)z2i(n) —/1 (W)Y3iW)zi/(n)
n=0 ~s=I

- W(n)Y5i(m)2a () +i(n)yEW2HW +/ 20yAM)ZA(N) + P(n)y3i(n)z3i(n)~,

where A" := A-H,i = 1, N, on the level surface Hc in the extended phase space M 4. Since the
functionals A € T>(M4), i = 1, N, depend on the functions (/,Y,Z)T € M 4, it is expedient



to apply the discrete analog of the Gelfand-Dikii relationship to the Lagrangian functional
£En = EIZIMN[i(n)ry(n)rZ(n)] € V(M 4) of the form

N N

En=-?0+E + E
i'=

i=1 |

where ¢- € C are Lagrangian multipliers, }ij —- E«=0 ¥3i(a)23i(a), i —1/N.
Because of the Lax theorem [11], [12] the condition gradt™[i,y,Z] = 0 determines the
invariant subspace M.N C M 4,

Ma={(fy,Z)TEM4:\=- EysRIf, /2= - X] Y522/ £ 1/1 = Ei/i'z30
| i=1 i'=I 1=1

n = E2toz3inVE = Af,GNe ~_12f= ~AT[f,gfl2f '=1Tv },
i=1 J
of the coupled dynamical systems (8), (9), (18) and (19) with the parameter /1 € {(1,..., ¢,v}:
Thus, for every N € N the invariant subspace M fj M Hc C A'i4 is diffeomorphic to the sub-
space Mfj C M4when¢ = JV,i—1 N.
By means of the discrete analog of the Gelfand-Dikii differential relationship [18], [19], [20]
forLn € T>(xi4) such as

dtN[i,y,z] = {Ne~ry~r)T/8w £ m[i,y,r}) + ((£-i),xM), (28)

where (Y, Z)T are coordinates on the suitably truncated manifold jCifj and the brackets (, )
denote the standard scalar product on C6lV+4, we can find the exact two-form (25)

w”N = daS1)
The reduced two-form a/2) := v~ ,, defines the symplectic structure on the invariant sub-

space M% IMHc ~ Mfj C Mfj, whicr'\mI is smoothly embedded into M fw due to the relation-
ships (23).

The formula (28) ensures the invariance of the reduced two-form a/2) with respect to the
operator (E —1), that is

N 3 N 3

> X a(e¢5i) Ad{€ysi) X X dzsi Adysi.

i'=1s=I i=1 s=I
Taking into account that the subspace M Nf]Hc C M 4 is diffeomorphic to the finite-dimensi-
onal submanifold M jf C R6N determined by the constraints

N N
Fi 'm=E yiiz2i= 0, F2:= E L4, =0,
i=l i=I
in the space IR6N, we can obtain the symplectic structure on M fj f]H ¢ as a natural Dirac type
reduction of the two-form &> on Aij-.
The two-form d>2) generates the standard Poisson bracket {., -}®(@) on JR6N. As the matrix
of constraints {FKI, PK2 2, k1, K2 = 1,2, isnondegenerate when Q := Eili (yiiZi,- - Yri*ri) @ 0,

the standard Dirac type reduction procedure [7,11] entails the Poisson bracket related with the
symplectic structure := a/ 24such that

{F-G}w,, = {P,O B + ~{i,P1}cP){r2,0}cx4 -

I N / ap dp \ N / aG 4G
i=l \  --i%i =iV oM Z2i2
1 a7 ap ap A L4 / aG a,G
q £, N HZI-N ) JE T ZF N+

where P, G € C°°(R6V]R) are arbitrary smooth functions. Since
Gfx/4t = 0, dEN/AT = 0,

with taking into account the results obtained in the papers [18], [19] we can state the existence
of the smooth by Frechet functions h(T), € V(M.4), which satisfy the relations (26) and

(27) correspondingly. Then for the functions = and = we have
m

id/dTAR) = -dh~A\  id/dTcvA = -dh(T\

where id/dr and id/dT are inner differentiations with respect to the wvector fields
d/dr : M & -> T(Mfj) and d/dT : M & -)- T(M®MN) in the Grassmann algebra of differen-
tial forms on R 6N.

Therefore, the functions h<I) and h17lare Hamiltonians of the reduced upon M fj fj Hc ¢
M 4 vector fields d/dr and d/dT when ¢: = Jl.,i = 1, N. They take the following forms

ANCEATYTIZ !, 11N 1),
i=l

h(T) = E (AN 313, - Ayi,zl)

i=I
Eili A/y,iZ2i+ /2(E£-V 1)) (c £ 1AY2/2, - /, ))
El=I(j/2iz2 - yifZli)

+ Vi) _E|n<>321|+ (£ 11 )_EIA(>@22i —2/1 E nviiizi ~ 12 E Y223
1= 1=

1= 1=
N N

+ 2/1(£~VI )1E(1i/3iz3i - yiiri) + /r (M) E I\ 3 i - yifzliy/
= =

where the functions /1, 72, V 2 have the forms (23).
By means of the direct calculations it is easily to verify that



Let us consider the vector field d/dt\, commuting with the vector fields d/dt and d/dT,
on the functional manifold M 4 and investigate its reduction upon the invariant subspace
MMNnHc C M4, N € N. In the same manner as in the proof of Theorem 1 we can find
the Hamiltonian representation for the reduced vector field d/dt\. The corresponding Hamil-
tonian takes the form

*('m) = M g¢-'"M -M ¢-"8).
(=1

Since

{h{h\ h ~}wi2) = - Afc(r) = 0/ {h~AM T)}w@ = - — fcW = 0,

the reduced vector fields d/dt\, d/dt and d/dT are integrable in the case of N = 1 due to the
Liouville theorem [1], [17].

3 The Lax-Liouville integrability of reduced vector fields

To state the Liouville integrability of the Hamiltonian vector fields d/dr and d/dT on
M NftHc C M 4forall N € N we need to construct the related matrix Lax representations,
which depend on the spectral parameter A € C, making use the reduction procedure for the
monodromy matrix of the periodic spectral problem (16). Thus, the following theorem holds.

Theorem 2. For every N € N on the intersections of the finite-dimensional subspace
M fj MHe — M jr with the level surfaces he = {(3" Z)T € RGN : =\W/%l —C, C €€} of
the invariant function 1 —p = =T=\ ysi~si the matrix Lax representations for the Hamiltonian
vector fields d/dr and d/dT have the following forms

dSpj/dx [B~, SNI, (29)
d$N/d T = [BUK $N], (30)
: (M — :
here BN = BU\YyrZ:;A) = A B B{\y,Z-,\) = B(NM[FA
w O\yrz:n) = BOUIN | By BO\Y.Z-\) = BOEAL |
areprojections of the corresponding matrices on M jr f) he and
Nosi
Sn EIA'A, + So

yiiz2i (31)
yiiz2i -C
V3iz2i

Proof. Making use the spectral problem (16), we can express the gradient @(n;A) := gradtrS
of the trace of the corresponding monodromy matrix

S S(n; A = Ali(n + g—I);AJA[f(n + g —2); Al X ... x A[f(n); Al

via the entries of the matrix ¥ = SA-1 by such away

f tr(VAfl) \ I -V13-ftv 33\
tr (VAh) -V n-fivn
CA
oA tr (VAF) 31 - /1¥33
Vitrb % )) Y32 —/2"33

where @(n; A) ~ EreZ+ gt(n)A (r+1\ opr = grad yr[i], when N -» 00, V is a matrix with the
entries, being complex conjugate to the corresponding ones of the matrix

/ Wu V12 VI3
vV = v2l V2 VB

V V31 732 V33

and Afx, Af2, Af*, Af* are matrices with the enteries, being complex conjugate to the corre-
sponding ones of Afx, Af2, Af*, Af* respectively.
From the equation for the matrix V

£{VA) = AV, (32)
we can obtain the Magri type relationships [15]
0@{n;A) = Anem;A) - nyo, (33)

where 0, n: T*{M 4) —T (M 4) are a pair of linear Poisson operators of the forms

/0 0 1 0 \
0 0 0 1
-10 00
VO -100
-liA-"ef1- £+ hUTfl+ f\b~IEfi
-/1A-'N +/20 -V |+
+P
“M -4 2- -f2nf2 £+ /rn /] +
A AN +/1A-1/T+
i? +P
— + /LH i+ /24 -7r 7 im /1 Ctta - Ew -
+/|A-1£/2-P ,
- ftbh - "ft
/20871 i+ /0 2+ /0 Yr - -FH
\ +/*0-1£/1-P -ftA-'eft
Here A = (£ —1),M = A_1(£ + 1). Taking into account the equality
<p(n; A-) tr S(n;A) grad A,
dA A=A
we find for every i = 1, N that
-1
Agrad A = A grad A + {;17A7 trS(n; A W/ A=nrr

A=A;



-1

Yy

where 4 := ( tr S(n; ) 1 = Ev=iYgi2niis invariant with respect to the vector fields
VilA a n,/

d/rfr and d/dT.

Then on the invariant subspace M jj fl Hc C A74 the gradients of the conservation laws
Tm€ V(M4), m € Z+, take the forms

N N N
yp = 1E1 A, 9>1:I'I®:_EIA*STCIdA‘+/I E I AL
= 1= 1=
N r N
oy= ANr-i = EIA/£ra||)\|+ E prE A/ P AL etc (34)
i= p=l i=
where
N N N N r N
/1l =E p//2—E AN NE N w-/ffr= E Afa+ E AE A N etc-
i=l =l 1=1 1=1 p=l 1=l

From therelationships (33)and (34) weobtain directly the explicit forms of the entries
Vi3, V23, V31 ¥31, V32, V33 on M fj MHc such as

Ms=U+Z w ) VQ= (1 +e /,n-TE
reN ! i=l
vm= (1+ E M -r V32 = 1+E/ E|/|T-
( reN /121/\ Al ( 'ﬂ') =l N JI
% =(ite N~ -"YYe |.N.

V reN ) =101 J¥

/ N G Y A
where 1+ EreN /4 r= ~ - E x_ Ay
The remaining entries of the reduced matrix Vn := can derived from the
equation (32), considered on the level surfaces hc, C € C, of the invariant function 1 - p. On
these surfaces the functions f{, /] satisfy the following equalities

/ N j \ N -~ N X
/1 {/1 —C+ E T-yiizN +/2 E T~Yir22i = E T"i/ZliZ3¢'
1=1 Al / i=l JI il=l Jr
N j / N j \ N 1
/1 E T"Y2i2Ir + /2 11 ~C+ E y1/2i2i = E yV?2iz3if
i=l 1 i=l A* / i=I n*
N 4 N 1 N 1
- /IE T'Y312L- /2 E yY3i22i+ E T-/3izi = C.
i=l ! i=l Al i=l A

Thus, the reduced matrix I/4von A4fj M Hc M C € C, is written as

where
N f Yiliyii'z2i YI/231 \ 1 -e 0 0
= E aTraT | vy2idi Y2i22i Y223 1+1 0 —CO
=1 "V Y321l Y322 Y3i3 / V O 0 0

The explicit form (31) of the monodromy matrix §§- onA4fj f) Hcf] /2, C € C, follows from
the relationship

Sn —VnhAn,

where the matrix A = AN(Y,2;N) = A[i;A]\Mjrflnc  a projection of the matrix A on
Mfj MWENhC-Thus,

= (1+ E /<A"]
V  reN )
N
where the matrix 5ar has the form (31) when A > max&"j |Afl and (\E I\ZFR * 1
i=i y

The relations (29) and (30) are derived from the monodromy matrix equation [6]
(ES)A = AS

and compatibility conditions (20)-(21). O

. . 1 . . .
Due to the equations (29) and (30) the functionals - tr Sy, a 6 N, are invariant with respect

to the vector fields d/at and d/dT. Then the coefficients in the expansions of these functionals
by poles appear to be conservation laws of the reduced upon AAjr f) he, C € C, vector fields
given by the system (8), (9). The coefficients a;, %, €, € C°(R&V,R), i = 1, N, in the expansions

of the invariant functionals tr Sn, x tr and - tr S8l such that

EN T GH 3C 4-1,
T A- A

NN 4 E (X T H+E X N +A/ C2-2c+1)

E ( E YxXax
- At A 2=l

fco, fc/i A AC K=1,Kpi Af
3C(/hzL; + y2,z21 + Y3i7si) + Y33ir



and

1 1 N a N i
L < tr (S/5feSg)  An  tr (SjSk) (Ck —Cj)
o' M= A -AIfc) A -A ™) (A —AR2

+ f  tr(SO(S Sk+ SKS,)) + tr (S29])

fc=, Kehi A AR
N *|1D1 YX||2><|’>) ( |D ySQ(ZXZk) ( ID
> (Af Afc) (A M)
M =i,
3
ID ¥xiF2xi*} ( 2 Yk ID (Yx32Xe  YsakexX)
n L (=1 K] \*2=1 7 X3-
feol, fo'f A - A2
N FCONizik+ V2zX+ V3239 + V3izX) (1D YxKUI]
VX=1 y
+ E A A
fe=, ke -
N C(yifczIf + V2kz2i + V3kz3i) + Ya23i) | ID ¥x'rxk)
4=1 J
fo=), kehi A—R i

+ (C2UIZif + C2teR2i+ (1 - C)2y3/Z3),

are functionally independent on 74j- fl*o C € C. Being involutive with respect to the Pois-
son bracket {.,-}w(@, the coefficients 0,, &, - € C” (R6N;R), i = 1,N, ensure the Liouville
integrability of the vector fields d/at and d/dT on the finite-dimensional subspaces M jr f] he,
C € C (see [1], [17]). The surfaces he, C € C, mentioned in Theorem 2, are determined by the
conditions

/ N 1 / N 1 \ N 1 f N 1 \\ N 1
{/ ID T y|||z3|n 1— + IDT >’2|222I2) XZ T_Yri23i ( ID T~Yil22r) ) IDT- YaiRis
fl=i Ah V 2=l n i1=l T Me=1 27//7,=1n'3

i2
I N j N N~ N XN N i
((} ©+ [E —vifizifi | IDT Ya32—ID 7 Yirigzi( ID T yoein) ) D TTvakoors
YAV, fI=l VA= i1=1 Al =1 1,2

+(c"Fi~AVEA) (0 _c+,1 0 viiian)

when

(mcHi Myl)  cte N

4 Conclusion

In the present paper by use of the method [2], [8], [9], [11], [22], [21] of reducing upon the
special finite-dimensional invariant subspaces we have investigated the Bargmann type reduc-
tion of the Lax integrable two-dimensional generalization of the relativistic Toda lattice [10].
We have shown that the symplectic structure on the corresponding finite-dimensional invari-
ant subspace can be found by means of the discrete analog of the Gelfand-Dikii relationship for
the related Lagrangian function on a suitably extended phase space. This invariant subspace
has been established to be diffeomorphic to the symplectic manifold smoothly embedded into
space R6N, N € N, with the canonical symplectic structure. The Lax-Liouville integrability of
the reduced vector fields given by the system has been proven.

If R = 2, forevery s € N, s > 2, the evolutions of the vector-function (f\, /2, /2)T €
M 4, which are generated by the vector fields d/dTs := d/dts+ d/dxS\and d/dT2 := d/dT
and written out with taking into account the equalities

Isftt = (d/dT + M\)sfv Isft = (-d/dr + Mi*)7T,

together with the relationship
dig/dTY = [19% M\}+,

determine (2 + 1)-dimensional nonlinear dynamical system with the triple Lax type lineariza-
tion. The symplectic finite-dimensional manifold described in the paper is acommon invariant
subspace of the vector fields d/dTs := d/dts+ d/dTS\, s € N, on which they are Hamilto-
nian and integrable by Liouville. Thus, it is interesting to investigate the possibility of ap-
plying the integration procedure, developed for the Liouville integrable finite-dimensional
systems in [24], to the vector fields reduced upon this invariant subspace. The integration
procedure [24] is based on the specially constructed Picard-Fuchs type differential-functional
equations which generate the Hamiltonian-Jacobi transformations.
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FeHTOow O.€. Peaykuia baprmaHa gns Aesakoro iHTerpoBHOro 3a Jlakcom ABOBUMIPHOIO y3aranbHeHHS pe-
NATUBICTCbKOrO naHut>kka Togm // Kapnatcbki matem. ny6n. — 2015. — T.7, Ne2. — C. 155-171.

Aocnig>XyeTbcsd MOXKJ/IMBICTb 3aCTOCYBaHHA MeToAy peAYKYBaHHSA Ha CKIHYeHHOBUMIPHI iHBapi-
aHTHI NignpocTopn, NOPOAXKEHi BNAaCHUMW 3HAYEHHAMM acoliioBaHOT cnekTpanbHOT 3agadi, Ana ge-
AKOro ABOBMMIpPHOrO y3arasibHEHHS PeNATUBICTCbKOro NaHuto>KKa Toagn 3 NOTPINHOK MaTPUYHOK
niHeapusauieto TNy Jlakca. BctaHOB/EHO raMi/iIbTOHOBICTb Ta IHTErPOBHICTb 3a JlakcoMm-JliyBinnem
3a4aHUX L0 CUCTEMOK BEKTOPHUX MOIB Ha iHBapiaHTHOMY NigNpocTipi, NoB'A3aHOMY 3 peAyKL,i-
€0 TNy baprmaHa.

KntoyoBi cnosa i chpasu: penaTUBICTCbKMIA NaHLOXXOK Toan, noTpiliHa niHeapusauia Tuny Jlakca,
iHBapiaHTHa peAyKLUisa, CMMMNJIEKTUYHA CTPYKTYpa, iIHTEerpoBHIcTb 3a JliyBinsiem.
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GENERALIZED TYPES OF THE GROWTH OF DIRICHLET SERIES

Let @ be a continuous function on [erg, A) such that ®(cr) — +<x>as o — A —0, where /1 €
(—To0, +00]. We establish a necessary and sufficient condition on a nonnegative sequence A = (A,,),
increasing to + 00, under which the equality

4A Do)  ofA @)

holds for every Dirichlet series of the form F(s) = X™=o0a,esA", s = o + it, which is absolutely

convergent in the half-plane Res < A. Here M(cr,F) = sup{lF(s)] : Res = o} and p(o,F) =

max{ lan\aoA"” : n > 0} are the maximum modulus and maximal term of this series respectively.
Key words and phrases: Dirichlet series, maximum modulus, maximal term, generalized type.
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Introduction

Let No be the set of all nonnegative integer numbers, E = RU {—o0, +00}, A be the class
of all nonnegative sequences A = (A,,), increasing to +00, A € (—o0, +00], and Q Abe the class
of all continuous functions ® on [(Tg A), such that

Vx €]R: lim(xc?—d(cr)) ——oo0. (1)
atA

Note that in the case A < +co the condition (1) is equivalent to the condition ®(g) -4 +oo,

0 —* A —0, and in the case A = +00 this condition is equivalent to the condition ® {¢)/0c —

+ 00, O —Y+00.
For a sequence J1 € A let

) = r|+t>% \n

Consider a Dirichlet series of the form
@
F(s) = Z anesAn, s = o'+it, (3]

n=0
and put
EL(F) = J(7€X: £) \m\wA" < +00j, E2(F) = {cr €1R:Jim \n\p\n = 0j ,

(F) = f~°°" if Ei(F) = 0, = i-0°, if E2(F) = O,
oN ' IsupE~F), IfE\(F) @0, P \sup E2(F), ifE2(F) ~ 0

© Hlova T.Ya., Filevych P.V., 2015

(ca(F) is the abscissa of absolute convergence for the Dirichlet series (2)).
It is easy to show that

= lim —1n7~t-
73F) = M N TRk

Also, it is well known (see, for example, [7, p. 114-115]), that

CTaF) < B(P) < ((F) + T(A)

and these inequalities are sharp (more precisely, for every A,B € K such that A < B <
A + T(N\) there exists [3] a Dirichlet series F of the form (2) such that aa(F) —A and /3(F) = B).

If oa(F) > -o00, then for each ¢ < aa(F) let M(cr,F) = sup{]F(s)] : Res = cr} be the
maximum modulus of the series (2). If /3(F) > —oo0, then for each ¢ < /3(F) let p{o,P) —
Tax{]anjsh : n € No} be the maximal term of this series. As is well known, in the case
aa(F) > —eowe have u(o, F) < M(cr,F) for all cr < aa(F).

By T>a(A) we denote the class of all Dirichlet series of the form (2) such that aa(F) > A
Put VA= unpge For @ € Npg and F € VA, the value

T*(f)=W F)=nifq o iin

will be called ®-type of the series F in the half-plane {s : Res < A}.
By VVA(\) we denote the class of all Dirichlet series of the form (2) such that /Z3(F) > A. Set
VA —unpeaPa(). For ® € QAand F € VVAwe put

Pt =uyn(p)=kK!=d p-.

If F € T>A then p(o, F) < M (o, F) foreach o < A, so I>(F) < T®(P).

Note that VA(A) C VA(A) for every sequence A € A. From what has been said above it fol-
lows that in the case A < +00 we have VA(\) = VVA(A) if and only if T(A) = 0. Furthermore,
D+00(A) = if and only if t(A) < +oo. Itis clear that VA C VVAand VA ® v \.

The notion of ®-type generalizes the classical notion of the type for entire Dirichlet series.

Let F be an entire Dirichlet series, i.e. F € V+3Q and p be a fixed positive number. Recall
that

T(F) = ;ta InMegar-f)

is called the type of the series F. If A€ A and t(A) = 0, then the type of every entire Dirichlet
series of the form (2) can be calculated (see, for example, [7, p. 178]) by the formula

T(F) = Hm — \an\bh. )
n—® ep
Let ® el . The function

D(X) = sup{x(7—o((7) :0 € [oo,A)}, xeR,

is said to be Young conjugate to @ (see, for example, [1, pp. 86-88]). The following properties
of the function @ are well known (see also Lemmas 2 and 3 below): @ is convex on R; if @ is
the right-hand derivative of ®, then ®(x) = xo(X) —P(9(x)), x € IR Y(x) < AonR and
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@(x) /m Aasxt +00;if x0 = inf{x > 0: ®(@(x)) > 0}, then the function ®(x) = P(x)/x
increase to A on (xo0, +00). Since @ is convex on 3R @ is continuous on IR Thus, the function
@ is continuous on (x0, +00). Let Ag= ®(x0+ 0) and y : (A0, A) -> (x0, +00) be the inverse
function of ®. Set Y(0) = +00 for ¢ € [A, +00]. Let F € VA be a Dirichlet series of the form
(2). Then /3(F) > A, so that

1 1
—Inj{=r> Ao, n > no.
An 1]

Let t > O be a fixed number and h(cr) = i®(cr), 0 € [agA). Then h(x) = i®(x/t), x € IR, and
hence h(x) = x®(x/i), x > t4Q Using Lemma 5, given below, we obtain

ipP) = Ilim , A* .. 4
o~ * (£ taiii)
Therefore, for every Dirichlet series F € V*A of the form (2) we have (4). Consequently, if

F € T>Ais a Dirichlet series of the form (2) such that T<p(F) = i@(P), then ®-type of this series
can be calculated by the formula

Te(P) = lim —7————r-, )
A)

Note, that in the classical case, considered above (A = +00, ®(g) = epa), the formula (5)
coincides with the formula (3). In this connection the following problem arises.

Problem 1. Let A€ A, ® € INpa. Find a necessary and sufficient condition on the sequence A
and the function ® under which To(P) = i@ (F) for every Dirichlet series F € VA.

In particular cases Problem 1 is solved in [2, 4, 5, 8, 6]. Denote by the class of all
function ® € CiA, convex on [(Jo, A). If ® € Q~, then the one-sided derivatives @' and d'+ are
nondecreasing functions on [a0, A) and @'_(cr) -+ +00, x f A. Besides, using the definition of
the function ® and Lemma 3, given below, it is easy to prove that

P_(PH) < x< ®+(0(x), x> X0:= P+00): ®6)

The solution of Problem 1, in the case of the sequence A = (n) and an arbitrary function
o € A wasobtained practically in [2, 4] for A = +o00 and in[5]for everyA€ (—o0, +00]
(actually, the growth of power series was investigated in [2, 4, 5]).Westate a result from [5] in
the following equivalent formulation.

Theorem A. Let A= (n), A € (—00,+00], and ® € Q*A. Then for every Dirichlet series
F € X>a(A) the equality T@(P) = i@ (F) holds ifand only if

In®'+ (o) = o(P(cr)), ot A

Let ® : [cm A) -+ IRbe a continuously differentiable function from the class g such that
@' is a positive function, increasing on [ctq, A). From (6) it follows that the restriction of the
right-hand derivative ¢ of the function ® to (xo, +00) is the inverse function of ®'. Put

= oc€[g0,N\)-

(As is well known, the function W is called the Newton transform of ®.) It is easy to see that
M(O(X)) = D(X), X € [xo, +00). For a sequence A € A, let ng(x) = En,<x 1 be its counting
function. The next theorem was proved by M. M. Sheremeta [8].

Theorem B. LeiA€ A, A € (—o0, +00], ® € be a twice continuously differentiable func-
tionon [oro, A) such that® *(o)/®{c) /- +o0 andIn®'(c) = o(® (o)) asa”™ A. Thenforevery
Dirichlet series F € VA(A) the inequality fo(F) < 1implies the inequality T<p(F) < 1ifand
only if

InnAX) = o(®(Y(*(x))), x ~+00. @)

Remark 1. We can rewrite (7) in the form
InnA(x) = 8(P(®(x))), X —m+00.
Furthermore, as is easily seen, the condition (7) is equivalent to each of the conditions

INnnA(®'(0)) = o(®(Y(0))), Oo"A;
Inn = o(®(P(A,,))), n —=mow.

Remark 2. The sufficiency of the condition (7) in Theorem B was proved in [8] only by the
condition that ® € Q” is a twice continuously differentiable function such that the function
®'/® isnondecreasing on [ag A).

Let t € (0, +00) be a fixed number. If ® satisfy the conditions of Theorem B, then the
function £ also satisfy these conditions. Applying Theorem B with i® instead of ® and taking
into account Remark 1, we see that FT@”) = i@(F) for every Dirichlet series F € TSA(A) if an
only if

Vi>0: Inn=o(®(P(A,71)), n-Xoo. (8)

Note also that Theorem B does not imply Theorem A. In addition, Theorem B does not give
the answer to the next question: whether the condition r(A) = 0is necessary in order that (3)
holds for every entire Dirichlet series of the form (2)? Note, that the positive answer to this
guestion was obtained in [6].

In connection with Theorem B the next problem arises.

Problem 2. Let Tq > fo > 0 be arbitrary constants, A € A, and ® € Q”. Find a necessary
and sufficient condition on the sequence Aand the function ® under which for every Dirichlet
series F € VAsuch that t<p(F) = to the inequality T®(P) < To holds.

In this article we obtain the complete solutions of Problems 1 and 2.

1 THE STATEMENT OF MAIN RESULTS

For a sequence A€ A, a function ® € Q™ and every > t\> 0 we put

Mhrh) = A@A(N\,12) = lim — - - -,
»-*" UP(A, /(1) - 2P(A,,/i(2)

First we mention some properties of A(t\, £2)



If d is a fixed number, then for the function 7 (t) = fO(ii/f), t € JR\{0}, we have

7+M =* (7) - 7<p(7) = -0 (f (]

Hence,

Let a > 0 be a fixed number. Consider the functiony = A(a,t), t € (a,+00). Using (9),
Lemmas 2 and 6, given below, and taking into account that the function <x(x) — ®(¢@(x)) is
positive on (xq, + 00), for every t2 > h > a we obtain

0<y(f2) < y(h) < k—_ay(tZ).

It follows from this that the next three cases are possible: the functiony is identically equal to
0; the function y is identically equal to + 00; the function y is positive continuous nonincreasing
on (a, + 00).

Let b > 0 be a fixed number. Consider the functiony = A(t,b), t € (0,b). Using again
Lemma 6, for every 0 < t\ < t2 < b we obtain

O<y(fi)<ny(i2):

This implies that if y(t2) = 0 for some t2 € (0, b), then y(t) = 0 on (0, t2]; if y(t\) = +00 for
some fi € (0, Db), then y(t) = +00 on [h,b); if the function y does not take the value 0 and +00
at some point t € (0, b), then this function increase at the point t.

Note also that the function a(x) = ®(¢@(X)) is nondecreasing on [0,+ 00), by Lemma 3,
given below. Consequently, from (9), for every d > 0 and t2 > t\ > 0, we have

(fj-ti)* (2 (!)) <'te (0 -<2¢p (0 <(i2-i0)p (»>(£))- m

The solution of Problem 1 is contained in the following theorem.

Theorem 1. Let A€ A, A € (-00,+00], and ® € Q/A. Then for every Dirichlet series F €
T>A(A) the equality T<p(F) = f<>F) holds ifand only if

Vi>0: Inn=o(®(@(An/n)). (12)

Remark 3. The conditions (8) and (11) are equivalent for every function ® € *A. This fact
follows from the inequalities

(1 - n®(enx) < P(P(x) < ®(e(X)). (12)
which hold for every fixed g € (0,1) and all large enough x (see Lemma 8 below).

Note also that if F € VA(A) and fg>F) = +oo, then T<d(F) = +00, bythe inequality
u(c,T) < M(r,F), 0 < A, sothat T<XF) = i@(P). In this connection, the nexttheorem
makes more precise Theorem 1 in the part of the sufficiency of (11).

Theorem 2. LeiA€ A, A € (—o0, +00], and @ € 0.A. If the condition (11) holds, then every
Dirichlet series F from the class VVA(\) such that i¢”~) < +oo belong to the class VA(A) and
for this series we have T<p(F) = ~(F).

The solution of Problem 2 is contained in the following theorem.

Theorem 3. Let Ae A, A € (—00, +00], D ¢ and Tq > to > 0 be arbitrary constants. Then
for every Dirichlet series F € VA(A) such that t<p(F) = to the inequality T®(P) < To holds if
and only if

VT > T03c € (i0,T) :  A(c, T) < 1L (13)

By Theorem3, for every Dirichlet series F € VA(A) the inequality f$(F) < limplies the
inequality Tp™) < 1 if and only if

VI>13c€ (L T): AT <1 (14)

If A= +00 and® (o) = o\na, ¢ > e, then, as is easy to show, the condition (14) becomes

|
n->00 nn

but the condition (7) from Theorem B takes the form
Inn = o(e/H, n—Qa0

Hence, generally, the condition (14) does not coincide with the condition (7).
In the part of the sufficiency of (13) the Theorem 3 can be made more precise.

Theorem 4. LetA€ A, A € (—o0,+00], ® € CIA/ and To > to > 0 be arbitrary constants. If the
condition (13) holds, then every Dirichlet series F from the class VVA(X) such that ip”) = to
belong to the class VA(A) and for this series we have T<p(F) < Tq.

Theorems 3 and 4 follow immediately from Theorems 5 and 6, given below, respectively.

Theorem 5. Let A€ A, A € (—o0,+00], b € Q~, and To > to > 0 be arbitrary constants. Then

for every Dirichlet series F € VA(A) such that tt>F) = t0 the inequality T®(P) < To holds if
and only if

3c € (trTo) :  A(c, To) < 1. (15)

Theorem 6. Let A€ A, A e (—o0,+00], P € Q”, and To > to > 0 be arbitrary constants. If the
condition (15) holds, then every Dirichlet series F from the class BA(A) such that t<p(F) = to
belong to the class TSA(A) and for this series we have T<p(F) < Tq

Theorem 6 follows from the next more general result.
Theorem 7. Let A€ A, A € (—o0, +00], and &, € Q™. If

~ 1
<+00, (16)

then every Dirichlet series F from the class VVA(\) such that\n}i(cr,F) < @(cr), ¢ € [0\, A),
belongto the class TSA(A) and for this series we have InM (0, F) < I'(cr),cr € [02,A).



2 Auxiliary results

Denote by X the class of all functions h : R -* 1R Suppose h € Xand leth€ X be the
Young conjugate function to h, i. e.

li(o) —sup{crx —h(x) : x ER}, o0¢e R.

Itis clear that if h,g € X and h(x) > g(x) for all x € R~then h(cr) <g(a) forallo € R.

Lethe X. Then h(x) < h(x) for each x € R, where h is the Young conjugate function to
h. Indeed, the definition of h implies that for every cr, x € R the inequality ox - h(x) < h(a)

holds. Then xo - h(cr) < h(x) for every o,x € R. From this it follows that h(x) < h(x) for
each x €R.

Lemma 1. Leth,g € X. Then the following conditions are equivalent:
(i) h(cr) < g(cr) forallo € R;
(ih(x) > g(x) forall x €R.

Proof. If the condition (i) holds, then h(x) > g(x) for each x € R. Since h(x) < h(x) for all
X € R, from this it follows (ii).

If the condition (ii) holds, then h(cr) < g(cr) for each ¢ € R. Since g(cr) < g(a) for all
a e R, from this it follows (i). M

Lemma 2. Leth € X. Then h is a convex function on R, i.e. for every X\,x2,x3 € R such that
N < *2 < *3 we have

h(x2)(x3- *i) < h(xi}(*3 - *2) + M*3)(*2 - *i). 7
Proof. For each t € R we have
(tx2- h(t))(x3- xi) = (ixi - h(t))(x3- x2) + (ix3 - h(t))(x2- xi).
From this equality and the definition of h we have (17). O

For a function lieXw e put Dh—{x €R : h(x) < +o00}. Itis clear that in the definition of
h(cr) we can take the supremum by all x € Dhinstead the supremum by all x € R.

Let A € (—o0,+00] and @ : [dg A) — R be a function from the class INg. We assume
that the function @ belong to the class X, setting ®(<t) = +oo for every o | [00, +00) (then
0@ = [cg, +00)). Fix some x € R and set

y{a) = xo - ®(0), 0 € [06A).

The function y is continuous on [(Tg A). In addition, by (1), y(cr) —* —eoas ¢ | A. Hence, this
function assumes its supremum on [po, A), i.e.

®(x) = g;%y(cr)-

Consider the set
S(x) = W > co: i/cr) = (X))}

From what has been said it follows that the set S(x) is nonempty and bounded. Let @(x) =
supS(x). Then gp¥) € S(x), i.e. maxS(x) exists and @(x) = maxS(x). Indeed, if we assume
that @(x) i S(x), then the set S(x) is infinite and ¢ < @(x) for every ¢ € S(x). Let (cm) be
a sequence of points in S(x), increasing to @(X). For every n € No we have y(crn) — ®(x).
Letting n to oo and using the continuity of the function ®, we obtain y(<p(x)) = ®(x), i.e.
<p(X) € S(x), but this contradicts the assumption that @(x) | S(x). Hence, max S(x) exists and
@(x) = maxS(x).

Lemma 3. Let A € (-00, +00], ® € QA and @(x) = max{? € [dg A) : xo - ®(0) = P(x)},
X €R. Then:

(i) the function @ is nondecreasing on R;

(ii) the function @ is continuous from the righton R;

(iii) <p(¥X) —=» A, X —=+oo0;

(iv) the right-hand derivative of ®(x) is equal to @(x) atevery pointx € R;

(v) ifxo=inf{x > 0: ®(p(x)) > 0}, then the function ®(x) = P(x)/x increase to A on
(Xo, +<*>);

(vi) the function a.(x) = ®(@(x)) is nondecreasing on [0, +o00).

Proof, (i) Let X\ < x2. Since xjf(xj) —P(<p(x;-)) = P (xy),€ {1,2}, the definition of ® implies
the following inequalities

Xip(X\) -@ {@ (x1)) > X\¥(X2) - D(P(X2)), X20(x2) - P(P(x2) > *2<K*i) - ®(Q(X1)).

Adding these inequalities, we obtain (@(x2) —<K*1))(*2 - Xi) > 0. From this it follows that
<p(i) < P(X2)-

(if) Let X0 € R be a fixed point. By (i) it follows that the right-hand limit @(x0+ 0) exists
and @(xo + 0) > @(xo0). Let us prove that @(xo + 0) = @(x0), i. e. that @ is continuous from the
right at the point Xo- Indeed, the definition of ® implies the inequality

X0(X0) - P(<p(x0)) < X@(X) ~ P(@{x))-

Letting x to Xo from the right, we obtain ®(x0) < xo™”™0 + 0) - ®(@(xo + 0)). On the other
hand, ®(x0) > xo<K*o + 0) - ®(@(xo + 0)). Hence, ®(x0) = Xo<p(xo + 0) - DP(<p(xo + 0)).
Then from the definition of @ we obtain @(xo + 0) < @(xo0) and thus @(xo+ 0) = @(X0).
(iii) Suppose the contrary, that is <p(+o0) = B < A. Let C € (B, A). Using the definition of
the function ®, we have
XC —®(C) < xo(x) —®(¢(x))

for every x € R. This implies that

X(C - <p{x)) < ®(C) - ®((X))-

Letting X to +o00, We obtain +oo < ®(C) —® (B), but this is impossible.
(iv) Let x € R be afixed point and h > 0. From the definition of the function ® we have

P(x+h)- @) * (x+h)<px) - P(e(x)) - P(X)
| — i *

r_z« 1 =y
P+ W) -®(x) X+ A- (xep(x +h) - (X +h)))

(o] + K).



Hence,
o < PEENZX) < s nf

Letting h to 0 and using (ii), we see that the right-hand derivative of ®(x) is equal to cp(x).
(v) Since X@(X) - P(x) = P(<p(x)) > 0 for x > xo,

4
(®))+ = X> X

Hence, the function ®(x) increase on (x0, +00). Furthermore, the inequality xo(x) - ®(x) > 0,
X > X0, implies that ®(x) < @(x) < A, X > X0 On the other hand, for every fixed Xy and each
x > X\ we have

D(x) = ®(x1) + J[X\ cp(tydt > d(x1) + (X - x)@(x1).

From this it follows that
lim (X)) > o(x\).

X—>+00

Letting X\ to + 00, we see that ®(x) —A, x —+00.
(vi) Let X2 > Xi > 0. Then

a(x2) - a(xi) = X(p{xi) ~ *i<p(*i) + P (*i) - P(*r) > *2<K*T) ~ XTP(XVY + {X1 ~ x2)¥(x2)
= xX\(@{x2) - o(x1)) > o
Therefore, the function a(x) = ®(¢@(X)) is nondecreasing on [0, +00). O

Lemma 4. Let A € (-00,+00], Pb P2 € Q/¥and Pi1(o) = d~g) forallcre [@0/A). Then
®a(x) = @2(x) for each x > Xo-

Proof. For/€ {1,2} let Op. = [cT},A) and
cpj(x) —maxjecr € [o}, A) : xer —®o) = ¢ Ox)}, x €IR

Lemma 3 implies that min{<j?i(x), 2(x)} > max{cro, @\,a2} for all x > Xo- Then for every
X > Xowe get

eh0x) = Xeu(X) - PHeu(X)) = X0uX) - P2{Y\(X)) < }%(Xa - ®2(0)) = P2(X),
®2(x) = X2 (x) - Pr(p2(x)) = xWi(x) - Prw2(x)) < EgK(xo - @1(0)) = P1(X),

and, hence, @1 (x) = P2(x). n

Lemmab5. Let A € (-00, +00], ® € CIA and F € VA be a Dirichletseries of the form (2). Then
k\}i(cr,F) < @(cr) foreach a € [00,A) ifand onlyifiIn\g\ < -®(A,,) forall n > no0.

Proof. Suppose that Inp(cr,F) < ®(o) for each o € [0, A). We set W(a) = P(cr) for every
0 € Ko, A) and W(o) = +oo forevery g | [a0, A). Leth € X be the function such that h{\,,) =
—In\on\for all n € No and h(x) = +oo for all x € R\{Ao, Ai,... }. Then Inpu(cr,F) = h(cr) for
0 < j6(F). Consequently, h(a) < Y(o) foreacho € R. By Lemma 1, h(x) > Y(x), x € R.
Therefore, using Lemma 4, we have In \an\= —h(A,,) < —Y(A,,) = —P(A,, forall n > Hg.

Now suppose that In \an\< —®(A,,) for all n > n0. If the function p(o, F) is bounded on
(-00, A), then, obviously, Inu(cr,F) < ®(o) for each ¢ € J[oo, A). If the function u(o,P) is
unbounded on (—e0, A), then we consider, along with F, the Dirichlet series

@
G(s) = J] bnesxn, s= 0 + it, (18)
11=0

such that b,, = 0 for n < no and bn = anfor n > no. It is easy to show that p(o, F) = u(g, G)
for each ar € [dg A). Besides, In\m\< —® (An) for all n € No- Hence, by Lemma 1, we have
1np(o, G) < d(cr), ¢ < A. This implies that Inu(o, F) < ®(cr) for each cr € [o0, A). O

Lemma 6. Let W be a function, convex on R, and Xo > 0. Then for all t\, t2, f3 € R such that
t3> t2> h> Owe have

‘e Y r)-"(M)rBT("(TT)""nm)) -

Proof. Since Y is convex on R, for every t\,t2,i3 € R such that i3 > t2 > f, > 0 we have the
following inequality

Y - XOWx0 _ xo\ <P /XOWX0 _ XOA +y AY’\ /X0 X0
hj \h h) \hJ \h i3/ \hj \h ®©

Multiplying this inequality by t\t2t3, we obtain
W - h) <Y i(i3- h) +Y h(t2- h).
From this it follows that

Y(R)AF" i} “4 (f)hih-()- T(Ff) f(3"f)- T(F) il('3*h)

Y (1) <312- 1) =Y (~) ((»2- 1.)- W (1) (3(2- to,

Y (1) t2(f3—h) —T (1) t3(t3- 10< Y (A)N»3- 2)+ Y (f) <3(f2 -

- W( 1) t3(t3- to =Y (') ti(t3- to - Y (!) t3(t13- 12).

Lemma 6 is proved. O

We note, that some of the above properties of the Young conjugate functions are well known
(see, for examle, [1, § 3.2]).

Lemma 7. Let (x,,) be apositive sequence such that

H%b?n =8> 1

Then, for every q € (0,1), thesetE(q) = {n € No : Inn > ijx,, AX[/2] > ~x?;} is unbounded.

to



Proof. If &6 — + 00, then, setting mk = min{n € No : Inn > (k + 1)x,,}, we see that mk € E(q)
for every k € No- If d < + 00, then, for some increasing sequence (pk) of nonnegative integers,
we have In pk ~ 6xpk, k -+ 0o. Therefore,

Ita = 1 Ita JilEL =i Ita < 1w ~ = 1.
£->00 JC[pfc/2] n X [p*/2] n X [pit/2] °c nn°° Xn
Itis clear that pk € Eq for all k > ko(q). O

Theorem 8. Let A € (—o0, +00], A € A be a sequence such that () > 0 in the case A < +00
and r(A) = +00 in the case A —+00, and G € V\(A)\T>A(A) be a Dirichletseries of the form
(18) such that b, > 0, n € No- Then for every positive on (—o0, A) function I there exists a
Dirichlet series F € T>(A) of the form (2) such that either a,, —bnor an = 0 for every n € No
and M(cr,F) = F(<) > &) foralia € [00,A).

Proof. We may assume without loss of generality that the function lisnondecreasing on
(-00, A).
Since G € VVA(N\)\VA(A), we have /73(G) > A and aa(G) < A.The inequality /73(G) > A
implies that there exists a sequence (nn), increasing to A, such that
1 1
— In

Then bn < B~1"A", n € NO. Since aa(G) < A, forall ¢ € (aa(G), A) and every m € No we have
22 breaAn = +00.

n>m

>nn n€E€NO.

Fix some sequence ( ¢ r increasing to A. We choose a sequence (mk) of nonnegative inte-
gers to be so rapidly increasing that the inequalities

Ut ><rp e -, "*"X-w(l(ak+t2) + 1)< — — 1,Z  b,er" > (oM )
1) n=mk

hold for every A€ No- Put

pk=min |l p > mk: 22 breakX'> /(o*+1) >, k € NO.
t n=mk J
Note that mk < pk < mk+\—1 and

Pk
Herk+1) < 22 brea < l(crk+i) + bp/~n < 1(cM ) + < I(cr+1) + 1.
n=mk
Letn € NO. If n €mk, pk\for some k € NO, then we put a,, =bn. If nl [mk, pk] for every
k € No, then let an —0. Consider the Dirichlet series F oftheform (2)and let us prove that
Cfl(G) > A. Indeed, for every fixed j € No we have

Pk Pk
22 angoiN'= 22 X Onfoan = E 12 breaX'eN°™
n>mj+l k>j+1n=mk k>j+\ n=mk
Pk
< 22 e N 22 bt
k>j+1 n=mk

< 22 e@ki <HA™z(<rfcH) + 1) < 22 ig < +00'
k>j+1 k>j+1*

so that aa(F) > A. Moreover, if ar € [00, A), then ¢ € [ak, (tk+\) for some A€ No and therefore
Pk Pk Pk
F(@ > £ oaneoA"= £ bre”™ > £ bre™" > I(cM ) > 1{0).

n=mk n=mk n=mk

Theorem 8 is proved. O

Lemma 8. Let A € (—o0, +00], P € and g € (0,1). Then the inequalities (12) hold for all
X > X0-

Proof. If @ € Op, then the function @ is increasing on [o\, A). Since

d(X) = o(x) - < @(x), x> xlIr

we have ® (P (X)) < @(p(X)), x > X2, i.e. the right of the inequalities (12) holds.
Further, using the convexity of the function ® and the inequalities (6), we have
D(@(x)) - P(@7X)) < (@(X) - >@)NP_(@{X)) < (¢{X) - <p(@x))x, X>X¥

and, hence, for all x > X4 we obtain

P(@7X) - P(P() < (@) - PNP*_((p7X)) < (@(nX) - PX) + 06X

< (®(07X) - ®(o(x)) P(e{X))
X

\ . ax = 4P (9{4x)).

This implies the left of the inequalities (12). O

3 The proofs of main results

Proofof Theorem 7. Let 1€ A, A € (—o0, +00], and ®, " €be functions that satisfy (16).
Consider a Dirichlet series F € VA(\) of the form (2) such thatinp{o,P) <®(c), ¢ €
[0, A). By Lemma 5 we have In Jq,] < —®(A,,), n > n\

Fix n2 > w, such that
qﬁz BED(A«;I.RT)',, <z

Then for all 0 € [021 A) we obtain

@® i o\
2 MAX = 2 MAN'+ 2 koKA< +E 41yt
n=0 n<n2 n>n2 n>n2e ()
=1/w+/w r N -rw < it +r </n.

2 n>«2 \2 n>«2 "P(A,,)/

Flence, afi(F) > A, so that F € T>A(A). Furthermore, InM(cr,F) < I'(cr), ¢ € [0 A). O

Proofof Theorem 6. Let 1 € A, A € (—o0,+00], ® ¢ g, and To > to ™ 0 be some constants.
Assume that the condition (15) holds, i. e. for some ¢ € (to, To) we have A(c, To) < 1. Consider
the functiony = A(c, t), t € (c, +00). It follows from the properties of this function, described



above, that there exists a point T € (c,7b) such that A(c,T) < 1. Letq € (4(c, T),1). Then
there exists no € No such that

Inn<n(oe (*"A-Toe ("\), n>no,

and thus ® 1

-------- < +00. (19)

Consider some Dirichlet series F € T¥A(A) such that t<p(F) —to- Then f<f>F) < c, and hence
In}i(<r,F) < c®d(a), 0 € [01,A). By Theorem 7, in view of (19), the series F belong to the class
T>A(A) and for this series the inequality InM (g, F) < T®d(cr) holds for all 0 € g2, A), so that
T<>(F) < T < T0. °

Proofof Theorem 5. In view of Theorem 6, it remains only to prove the necessity of the condition
(15).
We suppose that this condition is false, i.e. A(c, To) > 1for all ¢ € (to, Tg), and prove that
there exists a Dirichlet series F € VA(\) of the form (2) such that i@(F) = to, but T9>F) > To-
For every f2 > t\ > 0 we set

S(h,h) = Um (i2_ i)e((p(AI/iD)-

Note that A(it, t2) > S(h, t2), by the right of the inequalities (10).

First we consider the case when for every ¢ € (to, To) the inequality S(c, To) > 1, stronger
than the inequality A(c, TO) > 1, holds. By Lemma 7, for every fixed ¢ € (to, To) and q € (0,1),
the set E(c, q) of all n € No such that simultaneously

A[N/Z]\ A i A
Inn > ~(To-c)® (¢ (Y )) " o (W ("TN)) -nd(o

is infinite. Let (ck) be a decreasing to io sequence of points in (io, To) and (gk) be a increasing
to 1 sequence of points in (0,1). Choose a sequence (nk) of nonnegative integers such that for
every k € No the conditions nk € E(ck,qk) and [n*+i/2] > nkhold.

Let n € No- Put b,, = e~GRXWAAN if n € [[N*/2],n*] for some k € No, and letb,, = O, if
nl [[w/2],w] for all k € No- Consider the Dirichlet series (18) with the coefficients bn. This

series we can write as
~ nk ps\n

6s)= Y y —i-— . (20)
For all n € No such that n € [[nk/2], nk} for some k € No we obtain

1 1 =1lgp ~ =@ iA"

An btt A, \cklJ \ ck
Since, by Lemma 3, the function @ is increasing to A on (xo, + 00), we have /3(G) = A. Thus,
G € VA(k). Furthermore, if ¢ : (AgA) -» (x0,+00) be the inverse function of ® (here
AQ = ®(x0+ 0)), then for all n € [[nf/2], nk\and for every k > kO we have

This implies that i@ (G) = to.
If Ge vA(A), thenitisenough tosetan= bnforall n € No, i.e. itisenoughtosetF = G.
Indeed, if ak = (p(\I'Kck), then for each k € No and for all n € [[nk/ 2], nk] we have

tR- N (™) - (™) +cd (v (TK
>ckt (f(~)) >¢,® («-(~FfD) > %o (v (N

and hence

K PKA,
M(crk/G) = G(crk) > £
n=[nk/2] eckp(\,,/cK)

> Rxecklkd, {u>{"\/cK)) > NTo-N)DP(<p(A,4/7™))-1N2 ANMAD(<p(AMNM7)) _ eukTOdD{crk)-\n2
Therefore, InM(c”, G) > gkTod(crk) —1n2 for each k € No- Since ak — A ,k —aq we obtain

7*(F) = T*(G) > W > T,Bm4t =T,
k —00 4>[&k )k—teo

If G £ VA(X), then, by Theorem 8, there exists a Dirichlet series F € V A(A) of the form (2)
such that either an = bnor an= 0 for every n € No and F(cr) > er™ forallg € [<QA). Itis
clear that ip(E) = toand To(lN) > To

Hence, in the case when for every ¢ € (io, To) the inequality 6(c,Tq) > 1 holds the existence
of a Dirichlet series F € VA(A) with i@(E) = toand T@(E) > Tois proved. Now let us consider
the opposite case, i. e. suppose that for some do € (io, To) we have 0(do, Tg) < 1. Then

Inp < (TO-40)® (@ (Y ) -INn3, p> o

Since, by Lemma 3, the function a(x) — ® (@ (X)) is nondecreasing on [0, + 00), for every ¢ €
(io, do] we obtain

Inp < (TO- ¢)® ("pi-y Il “In3, p > po- (21)

By the above assumption, A(c, To) > 1 for all ¢ € (io, To). Then from the properties of the
function y — A(t,To), t € (0, To), described above, it follows that for every ¢ € (to, To) the
stronger inequality A(c, To) > 1 holds.

Let (ck) be a decreasing to io sequence of points in (io, G- Since A(ck, Tq) > 1 for every
k € No, there exists a sequence (nk) of nonnegative integers such that no > 2po and for all
k € No we have [n*+i/2] > nk and

Innk >Ckd (/;k? T oqo\(r/;-). (22)

Let n € No- Put bn =e_c*®(m/*), if n € [[nk/2],nK] for k € No, and let bn — 0, if
n | [[n™/2], nkK\br every kENo- Consider the Dirichlet series (18) with the coefficients
b,,. This series we can write in the form (20). Arguing as above, we see that f(G) = A and
ip(G) = to.



Using (21) with ¢ = ckand p = [nk/2] and also (22), for each k € No we obtain

To-c)® (i'( ~ 1)) >In[f] +1n3>Ins,>c, (~) - To * (If

/er (A))ﬂ- <r°- o) Tzk

Nnk/2] > Yk (23)
ck T0
Put ak = @(A4 /To). Then for every k € No and for all n €[[nk/2],nk], using (22), the
monotonicity of the function @, and (23), we have

and thus

<KAL- P (E) - AF(% ) -O®(E) -T,o(, (~)) +T,04

= (A -4)1- (%) - ** (£) + (~) +W <)

> (An- A > A + NP - Inn* + Tod ()
= (A, -A,t +cef 'k k ax-\nnk+ Tod(crk

( )<p\*0/ AT @ (Xx)ax (crx)
> (A - A ,> + ¢, @ (£) - Inn, + T, (<)
= (At-A,) - P - In™ + Tod (M)
> - |Innt+ TOP(o*.)-

If G € VA(kK), then itis enough to set an= bnforall n € No, i.e. itisenoughtosetF = G.
Indeed, in this case for every k € No we obtain

M(«7,,G) = Gta) > £ -E N - - > " mnn (Y =
n=[n,/2] ™~ ®JT L z
Hence, InM(Ofc, G) > TOP((7) - In2 for all k € NO. Since ak -> A, k -* 00, we have Td(T) =
Td(C) > TO.
If G I. T>a(A), then, by Theorem 8, there exists a Dirichlet series F € TSA(A) of the form (2)
such that either an = b,, or an = 0 for every n € No and F(cr) > e7(a) for all 0 € [oo, A). Itis
clear that i@(T) = ioand Tgp(P) > To. O

Proofof Theorem 2. Let A€ A, A € (—o0, +00], and ® € CIA. Suppose that the condition (11)
holds and consider a Dirichlet series F € V¥A(A) such that i¢(T) < +00. Set to = t<p(F). Let
To > toand ¢ € (to, To) be fixed numbers. Using the condition (11) with t = To and left of the
inequalities (10), for all n > no we obtain

TolJJ- 2\ \Cj \TO,

and thus A(c, To) < 1/2 < 1. By Theorem 6, the series F belong to the class V A(A) and for this
series the inequality Tj>(F) < TOholds. Since TO > t0is arbitrary, this inequality implies that

Te(T) = io (F). |

Proofof Theorem 1. Inview of Theorem 2, it remains only to prove the necessity of the condition
(11). Suppose that this condition is false, i. e. there exist positive constants to and s such that

— Inn

2 o (@\,zi0)) (24)

Set To — to + 3. Then, using the right of the inequalities (10), for every ¢ € (to, To) we obtain
AN(E) -TLo(l) <T,-0)® (9 (£)) <» (, (£)) ., »>no

Together with (24) this implies that A(c, To) > 1 for every ¢ € (to, To). Then, by Theorem 5,
there exists a Dirichlet series F € TSA(A) such that i@(F) = to and T®(T) > To > io- This
completes the proof of Theorem 1. O
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Fnosa T.A., ®inesny N.B. ¥Y3aranbHeHi Tunu 3pocTaHHA pagis Aipixne // KapnaTcbki matem. ny6.
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Hexalh @ — Taka HenepepBHa Ha [<KIGA) yHKLUisA, wo P(<r) -» +oo, AKWO o — A —0, ge
A € (—oo0, +00]. 3HalileHO HeObOXiAHY i 4OCTaTHIO YMOBY Ha HEBif'€EMHY 3pocTalouy A0 +00 MOC/i-
AOBHIcTb (/1,,)“=0, 3a AKOT 418 KOXXHOro abcoNntoTHO 36i>KHOro B NiBNAOWMHI Res < A pagy flipixne
Burnapy F(s) = ~=oanes™, s = 0 + it, BUKOHYETbCA CMiBBIAHOLUEHHA

AAINMKIT — InAF)

“oM P (0) au &d (0)
ne M(cr,F) = sup{]F(s)l : Res = a} itli(cr,F) = 1ax{la,leT : n > 0} — Makcumym moayns i
MaKcUManbHUM YNeH Lboro psaay BifNoBigHO.

KntouoBsi cnoea i hpasu: pag Qipixne, MakcUMyM MOAyAsi, MaKCUManbHUMA 4JieH, y3arasibHeHUN
T™n.
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GELFAND LOCAL BEZOUT DOMAINS ARE ELEMENTARY DIVISOR RINGS

We introduce the Gelfand local rings. In the case of commutative Gelfand local Bezout domains
we show that they are an elementary divisor domains.
Key words and phrases: Gelfand ring, Bezout domain, elementary divisor domain.
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Introduction

As a common generalization of local and (von Neumann) regular rings, Contessa in [1]
called that a ring R is a VNL (von Neuman local) ring if for each a € R eitheraor 1—a is a
(von Neumann) regular element. In this analogy, we consider Gelfand local rings which are
generalizations of commutative domains in which each nonzero prime ideal is contained in a
unigue maximal ideal. In this paper we show that a commutative Gelfand local Bezout domain
is an elementary divisor ring. Note that these results are responses to open questions in [6].

We introduce the necessary definitions and facts. All rings considered will be commutative
and have identity. A ring is a Bezout ring, if every its finitely generated ideal is principal. A
ring R is an elementary divisor ring if every matrix A (not necessarily square one) over R admits
diagonal reduction, that is, there exist invertible matrices P and Q such that PAQ is a diagonal
matrix, say (da), for which da is a divisor of d,+i/i+ for each i.

Two rectangular matrices A and B are equivalent if there exist invertible matrices P and Q
of appropriate sizes such that B = PAQ (see [5], [6]). Recall that a ring R is called a Gelfand
ring if for every a,b € R such thata + b = 1there existr,s € R such that (1 + ar)(l + bs) =0.
Aring R is called a PM-ring if each prime ideal is contained in a unique maximal ideal.

Results

Definition 1. An elementa € R of a commutative ring R is called a Gelfand element if the
factorring R/aR is a PM-ring.

Proposition 1. An elementa ofa commutative Bezout domain R is a Gelfand element if and
onlyifforevery elements b,c € R such thataR + bR + cR = R an elementa can be represented
asa —rs, whererR+ bR = R,sR+ cR = R.

© Zabavsky B.V., Pihura O.V., 2015

Proof. Denote R = R/aR and b = b+ aR, ¢ = ¢+ aR. Since aR + bR + cR = R, we have
bR+ cR = R. Letr = r+ aR, s = s+ aR. Sincea —rs, then 0 = rs, where rR + bR —R,
sR + cR = R. Then R is a Gelfand ring. By [4], R is a PM-ring.

If jRis a PM-ring, then R is a Gelfand ring and 0 = rs, where TR+ bR — R,sR + cR = R for
arbitrary b,c € R such that bR + cR —R. Whence we obtain aR + bR + cR —R and rs € aR,
that is, rs = at for some t € R.

LetrR+ aR = R sR + aR —S\R, wherer = r\r§, a = r™0o, s = SIS2, 1 —S\a2, such that
rOR + a0R = R and s2R + a2R = R. Since roR + ugR = R, we obtain r*u + aov = 1 for some
elements u,v € R. Since rs —at, thenr~s = and ros = sio- By the equality rOu + aov = 1
we have ao(tu + sv) —s. Therefore, a = rjflo where "R+ bR = R and aoR + cR = R. O

Proposition 2. The set of all Gelfand elements of a commutative Bezout domain R is a satu-
rated multiplicatively closed set.

Proof. Let a, b be Gelfand elements of R. We show that ab is a Gelfand element. Suppose the
contrary. Then there exists a prime ideal P and maximal ideals Mi, M2 of R such that Mt ¢ M2
and ab € P C Mt NMM2. Since ab € P and P is a prime ideal of R, we obtain thata € P or
b € P. This is impossible, because a, b are Gelfand elements and P ¢ M i T M2. Therefore, the
set of Gelfand elements is multiplicatively closed.

Let ab be a Gelfand element of R. If a is not a Gelfand element then there exists a prime
ideal P such thata € Pand P C M1 NMM2 for some maximal ideals Mi, M2 for which M1 ¢ M2.
Therefore, ab € P and P C M1 INMM2, Mt @ M2. This is impossible, because ab is a Gelfand
element. O

Definition 2. A commutative ring is a Gelfand local ring (GLR) if for each a € R either a or
1 —ais a Gelfand element.

Since in acommutative domain in which each nonzero prime ideal is contained in a unique
maximal ideal every nonzero element is a Gelfand element, we obtain the following result.

Proposition 3. A commutative domain in which each nonzero prime ideal is contained in a
unique maximal ideal is a Gelfand local ring.

The following example of a Gelfand ring is due to Henriksen [2].

LetR = {zo+ \X+ oa\X2+ ... \g € Z,WFE€ Q,i = 1,2 ,..TheJacobson radical of R is
J(Ry = {o\X+ o2+ ... s €qQ,i=1,2,..0bviously, ifo ¢ a I J(R) then ais a Gelfand
element. Ifa € J(R) then 1 —a is a Gelfand element.

Proposition 4. A commutative domain isa GLR ringifand onlyiffor every a,b € R such that
aR + bR = Reitheraorb is a Gelfand element.

Proof. Let R be a GLR ring and aR + bR = R. Then au + bv = 1 for some elements u,v € R.
By the definition of R we obtain that au or bv = 1—au is a Gelfand element. If au is a Gelfand
element, then by Proposition 2, a1 is a Gelfand element as well. If bv is a Gelfand element then
by Proposition 2, b is a Gelfand element as well. Sufficiency is obvious. O

The main result of this paper is the following theorem.

Theorem 1. Any GLR Bezout domain is an elementary divisor ring.
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Proof. Let R be acommutative GLR Bezout domain.Leta, b,c €R be such thataR + bR + cR =
R. LetaR + cR = dR. Since aR + bR + cR —R,then bR+ dR = R. Since R is GLR, then there
two cases are possible:

1) b is a Gelfand element;

2) d is a Gelfand element.

Let us consider the first case. If b is a Gelfand element, we have b = rs where rR + aR = R,
SR+ cR = R. Letp € R be such that sp + ck — 1 for some k € R. Hence rsp + rck = r
and bp + crk = r. Denoting rk = g, we obtain (bp + cq)R + aR = R. Let pR + gR = SR and
3 = ppx+ qgi with p\R + gq\R = R. Hence p\R + (bpi +cg\)R = R. Since pR C p\R, we
obtain p\R + cR = R and p\R + (bp\ + cq\)R = R. Since bp + cq = 3(bp\ + cqi) and (bp +
cq)R + aR = R, we obtain (bp\ + cg\)R + aR = R. Finally, we have ap\R + (bp\ + cqg\)R = R.
By [3] a commutative Bezout domain R is an elementary divisor ring if and only if the matrix
A = (%J JJ , where aR + bR + cR = R has a diagonal reduction. Note that a matrix A has a

C
diagonal reduction if and only if there exist p,g € R such that apR + (bp + cq)R = R. That is,
if b is a Gelfand element, R is an elementary divisor domain.

Consider the second case. Let d be a Gelfand element. Since dR = aR + cR then a = dao,
¢ = dcOr where floR+ cgr = R. Since R is a GLR ring, by Proposition 4 we obtain that an
element b or Q is a Gelfand element. Note, according to the Proposition 2 then a matrix

A= 7" "™\ whereaR + bR + cR = R is equivalent to the matrix Band B = » , where

B is a Gelfand element and ctR + R + 7R = R. By similar considerations as in case 1, we
conclude that a matrix B and hence a matrix A has a diagonal reduction. Therefore R is an
elementary divisor domain. O
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FPAHWNYHI KOJTMBAHHSA HEMEPEPBHUNX ®YHKLIA

Y uii poboTi foBeaeHO, WO ANA A0BiNbHOT HaniBHeNepepBHOT 3BePXY PYHKLiT/ : F -4 [0;+00],
o BU3HadyeHa Ha MexXi F = G \ G gesakol BigKpnTol MHOXUHM G B MeTPU30BHOMY mpocTopi X,
iCHye HenepepBHa yHKLiA g : G -> R, rpaHMYHe KO/IMBAHHSA () <sIKOT piBHe /.
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3Bepxy MyHKLINA.
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Bctyn

3agaya npo NobyaoBy (PyHKLIT 3 AaHMM KOMMBaAHHAM Brieplle po3rnsganacd B CTaTTi
M. Koctupka [5], B AKi1 6yn0 BCTAHOB/EHO, WO A/15 AOBINIbHOT HaniBHenepepBHOI 3BepXy PYH-
Kuii / : X — [0; + 00], wo BM3Ha4YeHa Ha METPU30BHOMY OGepiBCbKOMY NpocTopi X 6e3 i30/1b0-
BaHMX TOYOK, iCHYe pyHKLUiA g : X — IR, KonmBaHHA AKOi piBHe /. LLi gocnigxeHHA 6ynn
npoaoBxXeHi B po6oTtax C. NoHomapboBa, A. EBepT, 3. 'paHae, 3. AywinHcbKoro, C. Kosasib-
yuka [4, 2, 6]. MuTaHHA NPo No6yAoBY MYHKLI 3 NEBHOro (PYHKLLIOHA/IBHOrO Knacy 3 fJaHUM
KO/IMBaHHAM BMBYanocs B poboTtax [7,9,10,11,13,14].

Mu NpoAoBXYEMO AOCNIAKEHHA (DYHKLIM Ha Mexax X 06/1acTel BU3HAUYeHHS, po3noyaTe
Hamun B [12]. Tam 6yNno BCTAHOBMEHO, WO KOXHa HernepepBHa pyHKLUia / : F — [0;+00), BU-
3Ha4eHa Ha 3aMKHEeHI Hife He LWiNbHIN MHOXXMHI FC R 6e3 i30/1b0BaHMX TOYOK, € FPaHNYHNM
KOIMBAHHAM [eAK0T NoKa/ibHO cTanol yHKUii g : G —» 1R 1o BU3HayeHa Ha [LOMNOBHEHHI
G = IR\F. [doci He 3'AcoBaHO, Y1 MOXHa MobyayBaTn TaKy NOoKasnibHO cTany YyHKLi g A
[OBiNbHOT HaniBHenepepBHOI 3BepXy PyHKLUIT / : F -> [0; +00]. B gaHiii po6oTi 6yae fosene-
HO iCHYBaHHS HenepepBHOT DYHKLLIT g 3 TaKNMMK BNacTUBOCTAMM, UMM Bye AaHO BigMoBiab Ha
npo6nemy 13 [12] ans BMnagky, konu P — ue BNacTUBICTb HEMePepPBHOCTI.

Haragaemo, o 4514 AesKoi nigMHOXHM D TononoriyHoro npoctopy X, i AeAK0T PYHKLiT
g : D —1R KonmnBaHHA uiei PyHKLIT w8 : D — [0; +00] BU3HaYaeTbCA popMy 1ot

AW = inf SUP u)~g(v)!l, xeD.
U-oki/AX UOeUnD N~ (v)

BepxHA Ta HUMXHA rpaHuYHi PyHKuiigv,gA: D —=R = [—60; +00] BM3HaualTLCA hopMynamm

gw(x) = limsupg(u) = inf sup g(u),
m i n'K/MXuennC
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gA(x) = liminfg(u) = sup inf g(u), x€D.
oKINn X

AK BigoOMO, = gv-g A MHOXUHa suppg = {X € D :g(x) ¢ 0} HasnBaeTbLCA HOCIEM (PYHKLLIT
g. FpaHnYHMM KONMBaHHAM Ha3MBAETLCA 3BYXXEHHA a)g —w ? |p\D .

1 Bunagpok avnckpeTHOT o6nacTi BU3IHaAYeHHSA

Haragaemo, Wwo Hige He wWinbHa NiAMHOXWHa E TONOMOriYHOro npoctopy X HasuBae-
ThCS CNabKo MapHO A0CSHXKHOK [8], AKWLO0 AN A0BINbHOT BiAKPUTOT MHOXMHU G B X, TaKol, WO
E C G\G, icHylOTb HENEPETUHHI BIgAKPUTI MHOXWMHK A, B C G, Taki, wo A\G = B\G = E.
MpocTip X HasuBaTUMeMO €1abko NapHO AOCAXKHUM, AKLL0 KOXXHA 3aMKHeHa Hife He LifibHa B
X MHOXWMHa € cnabKo napHO AOCSHKHOR. MiAMHOXMHY S METPUYHOIO NPOCTOPY X Ha3uBaTu-
MeMO €-BiflokpemMHot [7], AaKwo d(s, t) > € ANnA AOBIIBHUX Pi3HUX TOYOK S,t € S. Kasatumemo,
WO S BiJOKPEMHa, AKLLO BOHA € £-BiIOKPEMHOIO ANA aesakoro € > 0. Kpim Toro, nosHa4aTMmemo

B(x.,e) = {y €X :d(x,y) <¢€}, B(E.) = (J B(x,€), d(x,E) = infd(x,y),
XEE yeE
anae>0, x € X i E C X. MHOXWHY S HaznBaTUMeEMO 0 -MCKPETHO, SKLWLO iCHYE NOC/igoB-
HiCTb OUCKPETHUX MHOXWH SN, Taka, Wo S = (()3 S,..
n=1

Teopema 1. Hexalhi X — MeTPU30BHUM tononoriunni NPOCTIP, F 3aMKHeHa B X iD guckpeTHa
B X, Taki, o F = D\ D i f: F — [0;+00] HaniBHenepepBHa 3Bepxy. Togi icHyeg : D —»
[0; +00) Taka, w o ajg —7/.

AoBefileHHA. 3adhikCcyeMo MeTpuUKY d, Wo nopoakye tonosorito X. 3 [7, nema 3] BMnnmBeae, L0
iCHye dpyHKuUia /i : F -> [0;+00), Taka, Wwo —/, i HoCi S = supp/i € 0-OUCKPETHUM B
F. KoXkHa 0-AnCKpeTHa NigMHOXWHA METPM30BHOIO NPOCTOPY NOAAETLCA Y BUTNAAI 31i4YEHHO-
ro 06'eAHaHHSA BiJOKPEMHUX MHOXMWH [7, neMa 2], 30Kpema, iCHye AN3'FOHKTHa NOCNiJ0BHICTb
BiJOKPEMHUX MHOXWH SN Takux, Wo S — OLj Sn.
n=1

Mokaxemo, wo MHOXXMHY D moxxHa nogatn 'y surnagi D = D\UD2, tak, wo D\IND2 = F.
Moknagemo Xo = D. OcKinbKu NpPocTip X0 METPU30BHUI, TO BiH € C/TAOKO NAPHO AOCSHXXHUM
[8]. Aani 3 Toro, Lo BCi TOUKN MHOXUHW D € i30n1b0BaHMMU, BUNAUBaE, Wo D BigkpuTa B Xo-
Ane MHOXMHa F C D \ D € cnabko napHO AOCSHXKHO. TOMY iCHYHOTb HEMEPETMHHI BigKPUTI
B X0 MHOXUHU A, B C D Taki, wo A\D = B\ D —F. NMoknagemo Di = AiD2 = D\A
Tomi DiI\D = A\D = F. Ockinnbkkun D2 = D\A D B, 10 D2\D D B\D = F. Kpim Toro,
D2\DCDN\D = F. Omxke, D2\D = F. Takum ynHom, mu gosenu, wo D\\D = D2\D = F.
OcCKiNlbku D — AguCKpeTHUIA NigNpocTip, TO BCi MOro WAMHOXWUHM 3aMKHeHI B D. 30Kkpema,
MaTMMEMO, LLIO MD = DiiD2MND = D2. Tenep 0OTPUMYEMO, LLIO

O[NOI= (D7nDI)\D)U((D7nD™)nD) = (DT\D) N(p2\D))
U((binNb)N(db2nbD)) = (FMNF)U(DiIND2) = FUO = F.
OCKiNbKU MHOXWHW Sn BiOKPeMHI, TO i ANA AeAKOT NOoCNiA0OBHOCTI umcesi 8N MHOXWHU Sh By-
Ay Tb <5,,-BiAOKPEMHMMN. BubepemMo AesiKy HEeCKIHUEHHO Masy NOCAifoBHICTb £,, < ONTak, Lwo6
0 < &n < &,_l gna gosinibHoro n > 1. Togi MHOXWHU Sn ByAyTh €,,-BifOKPEMHUMU. [106Y-
AyeMO ciM'T ToHoK [pn(x) : x € S, n € N) Tak, wob ans AoBiNbHMX X,y € S, n,m € N
BMKOHYBa/ICb YMOBW:
pn(x) € Di; 1)

P (X) d PMY)/ awwo (M,X) & (T,Y); @)

d(x,pn(x)) < X € Sm. 3

Mobyayemo crodatky Toukm pn(x) ana x € Si- 3adikcyemo gesske X € Si- To-
AiXxX€SiIiCSCFCDI . Mipkywun iHOIYyKTUBHO No n € N, BMOGEPEMO TOUYKU

p,i(x) € B(x, ™ 1) NO! \{pk(x) :k < n}. Mpunyctmo, Lo AN fesKoro T > 1 yxe noby-
poBaHi Toukn pn(x) gna HeN , k<mixe S k3 BMKOHaHHAM yMOB (1) — (3). OcKinbku ons
TakMx X MatumMemo, Wwo pn(x) — x, To MHOXMHa F(x) = {p,i(x) : n € N} U{x} 3amKHeHa.
Kpim Toro, ansa x € Sk,k < 1T maemo, wo F(x) C B(x, ©). 3T1oro, o S* € ¢™-BiJOKPEMHVNMMN BU-
namBeae, LWo cim'a kynb {B(X, y),Xx € S*} € ANCKPeTHOI. A 3HaUYNTb, ANCKPETHOI By/e i ciM's

{F(x) : x €S/]. OTxe, MHOXUHN FKk — U F(x) 3amKHeHi. Kpim Toro, F(x) MNMF = {x} ansa ko-
Xdsk

YKHOro x € Sfc. Tomy F* MF = S*. 3achikcyemo ToUKy X € Sm. BU3HauMMO rnocnigoBHICTb TOUOK
pn(x), wo 3a40B0/bHATL YMOBU (1) — (3). OcKkinbkn x € SMC F C ix”™S*=FTFana
K < T, TO icHye pi(x) € B(X, MDi \( (J F*). Mpunyctumo, Lo ANna geskoro n > 1 Bxe

K<T
BM3HaueHi p4x) gna; < n. Togi Bubepemo p«(x) € B(X, \i{pj(x) :j<n}U ( Pj.
k<m '
3po3ymino, wo ymosn (1) — (3) BUKOHYIOTbCA. TakmM YMHOM, cim'a (pn(x) : M € N, x € S)
nobyaosaHa.
Ana posinbHUX X € Si E C F noknagemo

P(x) = (p«(xX) :n €N}, P(E) —{pnx):n€N,x €ETNS}L
JoBefemo, L0 BUKOHYETLCA Taka BNacTUBICTb:

*) P(E) (IF C E ans poBinbHOI 3aMKHeHOi MHOXVHN E C F.

BisbMemMO 3aMKHeHY MHOXWHY E C F i nosHaunmo ET = E 1 Sm. OcKinbku |J1ET =
T=

EMN U Sm= ETS, 1o P(E) = U P(ET). Aani 3ayBaxxumo, wo P(ET) = U P(x). Kpim
w=1 In=1 *EE,,
TOro, 3 MOHOTOHHOCTI (g,,,) i BnactusocTi (3) matumemo, wo P(x) C B(x,~) npn x € ET,

amke d(x, pn(x)) < < Y npu x € ET. Anle MHOXXMHa ET € elBifOKpeMHOO. Togi ciMm's
(B(X, v ))xeET>a 3HauUUTH i ciMm'A (P (x))xeETe guckpeTHo0. KpiM TOro, ockisibku pn(x) — X,
To P(x) MF = {x} anga koxHoro x € ET. OTxe,

PETMNF= (J P(x)NE= (J Px)MNF= 1J{x} = EmMCE.
*EHL xeELL XeEni

Jani nosHaunmo Gm = B(E, ¢,n). 3HoBY BMKopucTasLu (3), matumemo, wo P(Efc) Q G, npu
k > T. TakuM YMHOM, ANns foBiNnbHOro m € N Maemo, Lo

P(E) - (J P(EKU (J P(Efc) = U PEfc)UY P(EK)C y P(EK)UGra
K<T K>T K<T K>T K<T
| HapeLTi, ocKinbKK 3a goBegeHum Buile P[EK) MF C E,ToP(E) MEC (J (P{EK)MF)UGmMC

K<T
@ _
E UG, ans KoxxHoro Homepa m. Togi 3 N Gm = E ogep>Xyemo
T=i

P(E)MEC Q (EUGM) = EU M Gm- E

w=1 T=1



OTxe, BnactuBicTb (*) fgoBeaeHa.

Mo3sHauynmo P = {pn(x) :n € N, x € S}. 3ayBaxmumo, wo P C D\i D2 Q D \P. BusHauu-
MO oyHKLito g : D —Y[0; +00) HACTYNMHUM YUAHOM:

0, akwoy € D \P,
s(y) = /i(x), AGKwoy = p,(x)i”Zi(x) <00,
m, akwoy = pn(x) /i (x) = °°

Mokaxkemo, L0 g e WwykKaHow. 3adikcyemo Xo € F. INMokaxemo crepuly, wo gA(xq) = 0.
BisbmeMmo gesiknii okin U Toukm Xo- Ockinbkn D2\D = F,To icHye n € D2T1Li. 3a 03Ha4eHHAM
dyHKUiITg Maemo, wo g(u) = 0. Kpim Toro, g(x) > 0 ana koxxHoro x € D. Tomy infg(u) = 0.
B Takomy pa3si gA(xo) = sup infg(u) = 0.

n-okix0ven

Mokaxkemo Tenep, Wo gv(xo) = /(*0)- [AoBegemo crioyaTky, wo gv(xo) > /(*0)- Akuwo
/(x0) = 0, To ua HepiBHICTb o4eBMAHa. Hexaii /(xo) > 0. Bisbmemo 7 € (0;/7(x0)) i ae-
AKUIA okin U Toukn xo- Ockinbku sup/i (Li) > /AV(xo) = /(xo) > 7/ 70 icHye ug € U Take,
wo Zi(«o) >7-3 ToOro, wo p,,(n0) >m«o npn A -> 00, BUNINBAE, WO iCHye HO € N Take,
o Aa4 gosinbHoro n > no matumemo pn{w,) € Li- 3a 03Ha4YeHHAM (PYHKLUIT g Maemo, Lo
g(Pn(u0))) /1 (mo) TPUIn —Y00. Tomy icHyBaTuMme i > 1o Take, WO 4715 AOBI/ILHOro n > N\

BMKOHYETbCA HepiBHIicTb g(pn(u0)) > 7. Omxe, sup g(u) > g(pn, (u0)) > 7- Ane Li — po-
ueUnD

Bi/IbHUIA OKiN Xo. Tomy gv(x0) = __inf léﬂg(u) > 7.CnpsamysasLwiun 7 o /(xo), MaTMMeMo,

11-OKI!'IX0IS/I
WOgv (x0) > f(x0).

MepeBipnmo, Wo gv(xo) < /(x0).Akw,o0/(x0) = AQT0 BCe AcHO. Hexain/(x0) < oo. Bisbme-
Mo € > 0 i gosegemo, o gv (xo) < f(xO0) + & Ockinbkn / HaniBHerepepsHa 3Bepxy, TO ICHYeE
BIAKPUTUIA OKin Tii Toukn Xo, ans sikoro Z(X) < Z(xo) + € npu X € U\ Po3rnsiHeMo 3aMKHEHY
MHOXUHY E = F \ U\ 3a BnacTtusicTio (*) matumemo, wo P(E) MNF C E. Aani, ocKinbkn Xo € P
i X0 £E, 70 X0~ P(E). Tomy BigkpnTa MHOXWHA Ug = U\ \P(E) € OKO/IOM TOYKUN XO-

Mokaxemo, wo g(y) < /Z(xo) +enpny € Uo(D. Bisbmemo y € Uo T D. Akuo
y |l P,tog(y) = 0 < /(X0) + ¢ Hexany € P. Togi icHytoTb n € N i x € S Taki, wo
y = p..(X). Ane p,,(x) =y € Uo = Ui\ P(E). Tomy pn(x) I P(E). OTxe, x | E. 3HaunTh,
XeF\NE = F\(F\UIl)=FrU 1CULOtxe, g(y) < Zi(x) < /(x) < /(x0) + & Taknm umn-
HoM, g{y) < f (x0) + enpny € Lion D. OTxe, gv(xo) = inf sup g(y) < sg;(:))HDg(y) <

ye

U —okln xq y(zJIf)D
f(x0) + & 3anmwmnocs cnpsamysaTn € —u0. O

2 MpoposxeHnHs 3a JyryHxi

0na MeTpU30BHOIO MPOCTOPY Y, 3aMKHEHOI MHOXWHW A B Y i HenepepBHOI OyHKLiT
f : A -¥]R po3rnaHemo nokputta B = {B(x, \d(x,A)) : x € ¥\ A} MeTpm130BHOro rnpocrTo-
py Y \A. 3a [3] iCHye NOKa/IbHO CKiHYeHHe PO30OUTTA OAUHULI (<ps)ses Ha Y \ A, Ake nigno-
pagkosaHe MokKpuTTo B. MNMo3Haummo Us = supp<ps, Toai {Lis : s € S} — foKanbHO CKiH-
YeHHe NOoKpUTTS Y \ A, BnucaHe B NOKpUTTA B. [ANnA KOXHOro s € S icHye xs € ¥ \ A Take,
wo Us C B(xs, \d(xs, A)). 3a 03Ha4YeHHAM BiAcTaHi Bif TOYKM A0 MHOXWHW iCHYE TaKa TO4Ka
ab € A, wo d(xs,as) < |d(xs,A).

(2 <Ps(x)f(as), x €EY\A
Moknagemo g(x) = Aay/(x) = <seS

[f(x)f X € A
PYyHKUIA g = AMNY/(X) Y — [0, +00) Ha3MBaETbCA MPOAOBXKEHHAM 3a AYTIYHXI (PYHKLUIT
h : D —[0; + 00). B po6oTi [1] noBeaeHO, WO g € HEMePEPBHUM NPOAOBXKEHHSAM /.

Nema 1. Hexalhi X — MeTpu30BHMIA TononoriyHmin npoctip, Y C X, A 3aMKHeHa B Y,
f : A—YR —HenepepBHa pyHKUIATg = Oay/ :Y R — NpoJ0BXeHHSA 3a AYIYHXI QOYH-
KUiT/. TOofli s kosxninn Touui xq € AN Y BUKOHYETbCALLO ay(xo) = Cvg(X0).

AoBefieHHA. Hexaii Lis, s, as Taki K B 03Ha4eHHi (pyHKUiT 0,4y . 3adikcyemo Touky xo € A\Y
i nokaxemo, wo cVf(xo) — o>g(xo). Mo3Haummo Sx = {s € S : x € Lis}, maTnmemo
g(x) = E (Ps(xX)f(as) anax € Y\ A

seS*

3a 03Ha4YeHHAM BEPXHbOT Ta HUXXHbLOT FTPaHUYHMX (PYHKLI MaeMO, L0 A/1s1 KOXKHOro € > 0
iCHYe Takmnin oKin U TOUKM X0, o AN KOXHOro x € Li N A BUKOHYETbCS HEPIBHICTb:

* = ['(x0) ~¢ < f(x) <f(xo0)+z = B
Brnbepemo Take 6 > 0, wo B(x0,3J)) C Li. Mo3Haunmo Uo = B(xq,S). Aani 3adikcyemo aesiki
x € oMY \A) is € Sj.ToAix € Us C B(xs, \d(xs, A)). 3sigcn d(x,xs) < \d(xs, A). 3iHworo
60Ky d(xs,as) < fd(xs, A). 3HaunTb, d(x,as) < d(x, xs) + d(xs,as) < \d(xs, A) + fd(xs, A) =
I d(XSrA). Taknm YnHOM, My fosenu, wo d(x,as) < \d(xs, A).

BisbMemo a € A. Togi d(x, A) < d(x,a). Ockinbkn Xo € A,104(X,A) < alignQd(x,a) —
d(x,x0) < 9, amke x € Uo Omxe, d(x,A) < 0o. Tenep d(xs,A) < d(xs,x) + d(x,A) <
\d(x3A) + 9. 3Bigcn |d(xs, A) < 0, aoTxe, d(xs,A) < ToAid(x,as) < \d(xs,A) < §- =
20. 3a HepiBHICTIO TPUKYTHUKA Maemo, Wo d(xo,as) < d(xo,x) + d(x,as) < 6 + 20 = 30.

OTxe, Mn gosenun, Wo ansa goBinbHUX X € oM (Y \A) i s € SX BUKOHYETbCSH, L0 as €
B(x0,3d) C U. Toai ana ddyHKU,iT / BUKOHYETbCA, W0 @ < f(as) < fB. BignosBigHO Matumemo

«= T r))-a< ()= T Psx)f(as) < T M*) -B = B
seSx seSx seSx

Takvm ynHom a < g(x) < B anga koxHoro x € Lo M (Y \A). Akuwo x € LiolNA, T0 3 T0r0, o
Lio < Li, BunnmBae, uxog(x) —/(x) € (a,B)-

OTXe, MU 0OBENN, WO AN KOXXHOro X € Lio MY BUKOHYETbCA HEPIBHICTL @ < g(x) < B-
3HaunThb,

COg(x0) < cog(Uo)

sup  \g(Xx")-g(x")\ <B-<x=/v(X0) + - (/A(X0)-¢)
X" x"euony

r(xo) - f A(x0) + 2¢ = cvf(xo) + 2¢.

Cnpsamysaswun ¢ —0, matmemMo cog(xo) < wf(x0). 3 iHWOro 60Ky, PYHKLSA § € NPOLOBXEH-
HAM (PYHKLIi/, a ToMy cVg(x0) > ay(x0). Taknm ynHom, w™(xo) = co/(x0)- O

3 OCHOBHWW PE3Y/IbTAT

MigMHOXMHY E TOMonoriyHoro npoctopy X HasMBaTUMEMO CNabKo AUCKPETHO [JOCAXHON
[8], AKW,0 ANS AOBINBHOI BiAKPUTOT B X MHOXUHN G, Takol, wo E C G\ G, iCHye 3aMKHeHa
AnckpeTtHa B G MHOXUHa A, Taka, wo A\G = E. B [8] noBefeHO, L0 B METPU3OBHOMY MpPO-
CTOpPI YCi 3aMKHeHi Hige He LWilbHi MHOXWHW € cNabKo AUCKPETHO AOCSHXHUMN.



Teopema 2. Hexail X — MeTpuU30BHWUIA TononoriyHnin npocTip, G Bigkputa B X, F — G\ G

i /:F — [0;+00] — HaniBHenepepBHa 3BepXy PyHKUiA. Tofdi icHye HenepepBHa PYHKLIA G :

G —)>KTaka, wo covg = f.

Ao0BeleHHA. 3a 03HAaYeHHAM AMCKPETHOT AOCSXXHOCTI iCHYE ANCKpPeTHA MHOXMHa D C G Taka,
wo D\D = G\ G = F. 3a teopemoto licHye h : D — [0; +00), Taka, wo a/, = /. MignpocTip
D € 3aMKHeHUM B G. Hexalh oyHKLia g = A DIGh. B [1] oBeAeHO, L0 g € HEMNEpPePBHUM NPO-
foBXeHHAM h. 3a nemoto 1 matumemo, Wo Ana fosiibHOro X € F — D\ G BUKOHYETbLCSA, L0
0jg(x) = L(x).0Txke,a) = wHAne coh = f. Tomy = /. OTXe, YHKLiIA g € lWWyKaHow. O
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We prove that for any upper semicontinuous functionf : F —¥ [0; +oo] defined on the boundary
F — G\ G ofsome open set G in metrizable space X there is a continuous functiong : G -* R such
that its limiting oscillation u)g equals /.
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MMNTPOPAHOB M.A.

BIJOKPEMAIKOBAJIbHI MOJTIHOMW TA PIBHOMIPHO AHAJTITUYHI |
BIAOKPEMJTFOBA/TbHI ®YHKLLIT

HaBefeHO OCHOBHI pe3ynbTaTu 3 Teopil BifOKpeMNOBa/ibHUX MNONIHOMIB Ta PiBHOMIPHO aHani-
TUYHUX Ta BifOKpeM/lOBasIbHUX PYHKLIiA Ha cenapabenbHUX AiicCHUX 6aHaxoBUX npocTopax. Pos-
rMAHYTO OCHOBHI BNacTUBOCTI BiJOKPEM/IIOBaSIbHUX MO/IIHOMIB Ta PIBHOMIPHO aHaniTUYHUX Ta Bif-
OKpeMNBaNbHUX (PYHKLUii. BKazaHO 3B'A30K MiX c/labkok noniHoMianlbHOK TOMOJIOTiED Ta TO-
nosorieto HOPMU 3a HasABHOCTI BiJOKPeM/l0OBasIbHOro nosiHomMa Ha npocTopi. HaBeaeHo pgocTaTHI
YMOBM iCHYBaHHS PiBHOMIPHO aHaMiTUYHUX Ta BifOKpPeMAOBaNnbHUX PYHKLiA. Jocnig>KeHo KOMMo-
3ULII0 PIBHOMIPHO aHaNiTU4YHOT Ta BifOKpPeMItOBasibHOT PYHKLIT Ta NiHIMHOro Bigo6paXkeHHs.

Kntoyosi cnosa i hpasn: BigoKpematoBasibHI NOAIHOMU, BifOKpemMntoBanbHi GYHKLIT, aHaNniTUYHI
PYHKLIT.
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Bctyn

Y 1954 poui A. Kypugein y npaui [17] BcTaHOBMB YMOBUW anpokcumaLii HenepepBHUX Oy H-
KLih aHaNiTUMHUMM Ha BIAKPUTUX NiAMHOXWHaxX cenapabenbHUX AiCHUX 6aHax0BUX NPOCTO-
piB. ABTOPOM, Y LibOMY BUNaAKy, AOBEeAEHO LLO AOCTATHLOK YMOBOK A1 arnpoKCUMaLLiT € iCHY-
BaHHA BiJOKPEM/IIOBa/IbHOro NosliHoMa Ha npoctopi. Y 2012 y npaui [2], 3a HasABHOCTI BiA-
OKPEM/OBaNIbHOIO MONIHOMa, BCTAHOB/IEHO 3B'S30K MiXX C/1a0KOHK MOAIHOMIa/IbHOK TOMONO0-
rieto Ta TOMosorietdo HOpMU Ha 6aHaxOBOMY MPOCTOPI. Y NofanbLUUX AOCNIAKEHHAX anpoKcu-
MaLLii HarbinbLl 'PYHTOBHUI pe3ynbTaT oTpumanu M. boico Ta M. Taek, y 2001 poui y npaLii
[9]. 3okpema BOHWM f0Benw, L0 ANS BUMAAKY anpokcumauii piBHOMIPHO HenepepBHOT dOyH-
KUii Ha NPOCTOPi YMOBa iCHYBaHHS BiOKPEM/IHOBA/IbHOIO MOsIiIHOMAa MOXXe O6yTu nocnabneHa
[0 iCHYBaHHS PIBHOMIPHO aHa/IiTUYHOT | BIJOKPeM/IH0BaNIbHOI PYHKLIT. [MpoTe, He3BaXkaouun
Ha noganbLui gocnigkeHHsA (30Kpema, npauto [8] aBTopis A. Asrapga, P. ®paii, A. KiHep), Ta-
KX OOCTaTHIX YMOB ICHYBaHHSA anpokcMMmauii 4oci He Bganocs rno3dyrtuca. ToMy akTyasibHUM
3a/1MWAETbCA MUTaHHA NPO Te, AKi caMe NMPOCTOPU AOMYCKaloTb BiOKPEM/IHOBa/IbHI NONTHOMM
Ta BiJOKPEM/IHOBa/IbHI PIBHOMIPHO aHaNiTUYHI PYHKLIT.

3 Teopii BigOKpeMAOBa/IbHMUX NONIHOMIB Ha 6aHaXx0BUX MNPOCTOPax CYTTEBI pe3ynbTaTu OT-
prMaHo y 1989 poui M. dabiaHom, [. Mpeiccom, XK. Batdiengom Ta B. 3iznepom y cTatTi
[13] Ta gaHo rpyHTOBHUIA ornag y 1997 poui P. MoH3ano, X. Xapamino y ctatTti [14]. 3 Teopii
PIBHOMIPHO aHaIITUYHKUX | BIZOKPEMTIOB/IbHUX PYHKLIT HA 6GaHaXx0BMX MPOCTOPax OCHOBHI
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pesynbTaTh BUKNageHi y 2001 poui y npaui [9]. MpoTe BCi Wi pe3ynbTaT BUKIaAeHO aHrNin-
CbKOK MOBOK, Kpim TOro nicna 2001 poky oTpMMaHo AesKi HOBI pe3y/sibTaTu AK 3 Teopii Big-
OKPEM/IIOBa/IbHUX MOIHOMIB, TaK i 3 TeOPIii PIBHOMIPHO aHaIITUYHUX | BiAOKPEM/TIOBa/IbHUX
byHKL, 30Kpema npaui [2, 6,4]. MeToto L€l cTaTTi € 'PYHTOBHUI OrNA4 CydacHUX pesy/ibTa-
TiB y UMX HanpsAmKax. OCKiNbKM faHa cTaTtTsa € Or/is40Bot0, TO 3HaYHa YacTUHa pesy/ibTaTiB y
Hili NnofaeTbcs 6e3 AoBeAEHb SAKi € HaBeAEHMMM Y NMOMNepeaHiX CTaTTAX 3 L€l TEMaTUKKU, NpoTe
Ha[aKTbCA MNOCUNAHHA Ha [OBEEHHSA LMX pe3y/ibTarTis.

1 BinokpemnimoBanbHi noniHoMu Ta ix BnacTuMuBOCTI

Bci moniHOMM, KOTPi MW ByAeMO PO3rAsiAaTv B LiiA CTaTTi, BBAXKatOTbCS HEMEPEPBHUMM.
ICHye KinbKa (He eKBiBa/IEHTHMX) O3HA4YeHb BiAOKPEM/IIOBA/IbHOrO0 MOAIHOMA. 3 HMUX Hal-
GiNbLU BXXVBAHVMU € HACTYIHI.

O3Ha4veHHA 1.1. Hexah X € HOpPMOBaAHUM NPOCTOPOM Hag nonem AiicHUX yncen XK JTiicHWA
noniHoM gq : X — R Ha3nBaeTbCA BiJOKPEM/IIOBA/IbLHUM MONIHOMOM, AKLWLO ( 3a40BOSIbHAE
YMOBY

W Au(x)-all>o. ()

“ex 1M1=
Lle o3HaueHHA HeaBHO BBedeHe Kypugeinnem y [18].
O3HauyeHHA 1.2. Hexail X € HOpMOBaHWM NPOCTOPOM Haj Nonem AiACHUX yucen R. JTiicHMN
noniHom g : X -* R HasMBaeTbCA BiJOKPEM/OBAbHUM MOMIHOMOM, SIKW,0 ( 3af0BO/IbHSAE
YMOBU:
1. q(o) = o,

2. 1q(x) |» 1gna koxHoro x € X, Takoro wo jixlj = 1.

Lle o3HaueHHS 4acTO BUKOPUCTOBYIOThL Y liTepaTtypi.
Y npaui [14] BBegeHO He eKBiBaJIeHTHE 40 MnorepeaHiX HacTyrnHe 03Ha4YeHHS BiJOKPEMIIIO-
Ba/IbHOro noniHoma.

O3HauveHHSA 1.3. Hexaih X € HOpMOBaHMM NPOCTOPOM Haj Mofem fJincHMX yncen R. JTilicHWN
noniHom g : X — IR Ha3nBaeTbCHA BIJOKPEMNOBA/IbHUM MONIHOMOM, SIKWL,0 ( 3aA0BOJIbHSE
YMOBMU:

1. q(o) = o,

2. inf{(/(x) : Ix|I = 1} > 0.

O3HauveHHA 1.4. Hexalh X € HOpMOBaHMM MPOCTOPOM Hafj nonem JincHux ymcen R. JTiicHUIA
nofiHoMm gq : X — R Ha3nBaeTbCsA BiJOKPEMIIOBANLHUM MOMIIHOMOM, AKLW,0 ( 3a40BO/IbHAE
YMOBMU:

1 q(0) =0,
2. mEN\g\ : JHl= 1} > 0.

MpoTe, AK Nerko repekoHaTucs, NUTaHHA NPOo iICHYBaHHSA BiJOKPEM/TIOBa/IbHOIO MosliiHOMa
Ha NMPoCTOpPi Mae Of4HaKOBY BiAMOBIAb Y CEHCI KNacCUYHMX 03Ha4YeHHb 1.1,1.2 Ta 03Ha4YeHHA 1.3.
Hapani My 6yeMo BUKOPUCTOBYBATW O3HauUeHHA 1.3.

1.1 BnactmBsOCTI BifOKPEM/IHOBaJ/IbHUX MOJTIHOMIB.

O3Ha4yeHHs 1.5. MoniHom P € "P(nX) Ha3MBawThb NOJIHOMOM CKIHYEHHOr0 TUMy, AKLW,0 BiH €
CKIHUYEHHO CYMOI CKIHYEHHUX J0OYTKIB NiHINHUX (PyHKLioHaNiB.

MpocTip NoNiHOMIB CKIHYEHHOro TUNYy no3Ha4varoTs V f(nX).

O3HayeHHA 1.6. MoniHom P € V(nX) Has3MBalTb anpPOKCMMOBHUM, AKLL0 BiH HANEXUTb [0
3aMUKaHHA MHOXWHW BCiX MONIHOMIB CKIHYEHHOr0 Twny.

3ayBaXXMMO, L0 BCi anpPOKCUMOBHI MONIHOMW CKIHYEHHOIO TUMY € C/1TabKO HenepepBHUMNA,
OCKIiNbKW BCi NiHINHI PYHKLiOHaNW € cnabko HenepepBHUMM.

3ayBaXKMMO, W0 AKLLLO PO3MIPHICTb NpocTopy X AOPIBHIOE OAMHULI, TO KOXXHE HEHY/IbOBE
NiHiNHe BigobpaxkeHHA L Take, wo L(0) = 0, Hanpuknag L(X) = X, 6yae BifOKpeM/II0Ba/IbHUM
MosliHOMOM.

Y BMNagKy, KoM pPo3MipHICTb HOPMOBaHOro Npoctopy X Hag nonem R (abo C) € He MeH-
LUOK 3a fABa, 3 pe3ynbTaTiB AnekcaHposa [1] BunavBae, Wo chepa B npocTopi X € NiHiNHO
3B'A3HOI0 MHOXWHOK. Y nofasibLlioMy 6yaemMo BBaXKaTu, Lo npoctopu X 1a Y MaloTb pPo3Mip-
HIiCTb He MeHLLY 3a ABa.

TeepayxkeHHA 1.1 ([5]). BigokpeMntoBanbHUANONIHOM HECKIHYEHHOBUMIPHOIo NpocTopy X He
€ anpPOKCMMOBHUM.

AoBegeHHA. 3a Teopemoto ongctaiiHa [3, cT. 460] 06pa3 ogMHUYHOI cchepn 3 X cnabko Lwiifb-
HUIA B OOVHWYHIN cdpepi Apyroro cnps>keHoro npoctopy X". OTXe, iCHYe HaNpPAM/IEHICTb Ha
OAMHWYHIN chepi B X, fAka cnabko npsamye o Hyns. OCKiNbKW MOsiiHOM € BifJOKpeM/10Baslb-
HUM, Oro 3HaYeHHS Ha i HaNPSAMAEHOCTI He NPAMYIOTb 40 HynA. OTXe, BiH He € cnabko
HenepepsHUM. BpaxoByroumn, WO BCi MONIHOMU CKIHYEHHOIO TUMY € CNabKo HerepepBHUMMU,
BKa3aHW NoNiHOM He HabNmKaeTbCcs NONIHOMamMu CKIHYEHHOrO TUMy, a, OTXe, BiH He € anpo-
KCMMOBHUM. O

Finb6epTiB NPOCTip € HAMNPOCTILLXM NPUKNAL0M HECKIHYEHHOBUMIPHOIO NMPOCTOPY, SKUIA
[JOMYyCKae BigoOKpeMAOBa/IbHUI NoniHom. Hacnpasgi, akuwio B — 6iniHiiHa dhopma BMU3HaYe-
Ha cKanspHUM JobyTKoM rinbbepToBoro npoctopy H, Togi noniHom q(x) — B(x,x) = |2
€ BIJOKPeM/TI0Ba/IbHUM MONIHOMOM Ha H. 3 iHWoro 60Ky, npunyctnmMo, wo X € 6aHaxoBUM
NPOCTOPOM, LLIO AOMYCKAE OAHOPIAHWI BiLOKPEM/OBa/IbHUIA MOIHOM  cTeneHs 2. Hexai A €
6iNiHIMHO CMMETPMYHOIO (DOPMOID, acouiioBaHoIo 3 @, | Hexaw a = Inf{J~)| : 1IxI]=1}.3
OLHOPIAHOCTI BUMN/INBAE, LLIO

alIX¥lz ~ FI = 1191 ™ IATTME-

Lle o3Hauae, o
11 = (k(*)1)*
€ riNIbbepTOBOIO EKBIBA/IEHTHOK HOPMOK Ha npocTopi X (iHakLe KaxKyyu npocTip X € i3oMop-

goHMM [0 rinb6epToOBOro NPoOCTopy).

Y npoctopax i 2, Ta ‘Ixngnsa n € N icHyoTb BifOKpeMIt0BasibHi MONIHOMU, SKi MU Onuncye-
MO Y HacTynHomy rnpuknagi.



Mpuknag 1. BusHaunmo noniHoMm Fy gificHomy npocTopi 12n noknasLw

[ee]

F(x) = [M2= £ x?T X = (xu/-m-/*«/-m-) € "
i=1

Nerko 6aunTwu, Wo F € 2n-o4HOPifHUM BiJOKPEMIIOBASIbLHUM MOJTIHOMOM.
B 3aranbHoMYy BUNagky, Hexa (Q, 4) — BMMIpHWIA NpocTip 3 Mipot Y. Ha gilicHomy npo-
cTopi I 2n(1, ) noniHOM

Fe) = L xmznen,  x(t) € £n(@, ),
Oygae BifOKpeMNOBanbHUM 2N-04HOPIAHUM NMONTHOMOM.

MpocTip M He gonyckae BifOKPeM/IIOBasIbHOro nosiiHoma. Lle BunnvBeae 3 pakTy, fosene-
HOro y [23], L0 KOXXeH NofiHOM Ha NPOCTOPI cq ¢ CNIAOKO CeKBeHLia/IbHO HenepepBHUM. OTXe,
AKLLO € NONIHOMOM Ha npocTopi Q) Takum, wo q(0) = 0 Ta {ej} € BignosigHNM 6a3ncoM Ha
cO, Togi

inf \ofg)\ = 0

/EN
Ta g He MoXKe ByTU BigOKPeMHOBa/IbHUM MOIIHOMOM.

TeepaXeHHA 1.2 ([14]). AKwWw 0 Ha npocTopi X iCHYE BiLOKPEM/II0BAIbHUI NOMTHOM ( CTeneHs
m, ToicHye 2(T!)-04HOPIAHWI HeBIA'EMHUIA BiJOKPeEMNOBaNIbHUIANONIHOM d.

NoegeHHA. Hexal BifOKpeMntoBasIbHUIA MONIHOM ( Mae BUrAag q = qo + o\ ... gm ge gk —
/C-0HOPIAHI NONIHOMM Ta (0 € KOHCTaHTO B X. 3yM0BM 1 03Ha4eHHA 1.3 Bunnmeae, wo qo = 0.
Brn3Hauymmo nosiiHoM d HacTynmHUM YMHOM

d:=("H) + (qtfw "2+ (gm)2{m])/m.

HecknagHo nokasatu, wo d € 2(w!)-ogqHOPIAHUM BiJOKPEeMIKOBa/IbHUAM NMOIIHOMOM Ha MpPocCTo-
pi X. O

CkiHyeHa cim'a noniHomiB {qi,q2,- --,qn} Ha NMpocTopi X Ha3MBAaETLCA BiJOKPEMIIIOBA/ILHOKO
CiM'€l0, AKLLO A1 KOXHOro X € X takoro, wo N\ —1, My maemo

max {ql(x)} ™ 1.

3BMYaHO, AKLLO iCHYE BifoKpeM/oBasibHa ciM'a noniHomis {q\,q2, mmqn} Ha npocTopi X,
TO UeN npocTip AONYyCKae BifOKpPeMNOBa/IbHUIA NoniHOM. Hacnpasgi, po3r/isiHeMO MOAIHOM
q(x) = (qi+qi + = + gn)2, 9KWA, 9K Nerko 6aumTun, dyae BiJOKPEMOBaSIbHUM NOSIHOMOM.
HeBifoMOI 3a/IMLLIAETLCA BiAMOBIAb HA NMUTAHHSA: Y/ A0MYyCKae NpocTip X BiJOKPEM/IH0Ba/lb-
HWIA NONIHOM CTereHs, WO He NepeBULLYE M, AKLLO Ha HbOMY iCHYE BiJOKPEM/IOBa/IbHA CiM'sA
MONIIHOMIB, CTEMNEHI AKMUX HE NEPEBULLYIOTh LLU?

BnacTtuBicTb MaTu BiJOKPeM/IOBa/IbHUM NOMIHOM € iHBapiaHTHOM BiAHOCHO i30Mopdi3miB,
TOGTO AKLLO MM MaeMO i3omMopdiaM MiXK ABOMa 6aHaXOBUMM MPOCTOPaMM, Ta OAVH 3 LMX NPO-
CTOpiB AonycKae BiAOKPeMIOBasibHUI MOAIHOM, TOAI APYTrMiA NPOCTIP TaKOoXX A0MNYCKae Bif-
OKPEMNIOBa/IbHWI NMoMiHOM. CKiHYeHWI fOo6YTOK NPOCTOPIB, AKi AOMYCKalTh BiJOKPEMIIIO-
Ba/IbHUIA NOJTIHOM, TaKOXX [0MYyCKae BifOKPeM/IOBa/IbHUI MOMIHOM. TaKOX, AKLLO0 MigNpocTip
CKiHYeHOI KOPO3MipHOCTI fonyCcKae BifOKPeM/0Ba/IbHUIA MOMIHOM, TO BECb MPOCTIP AOMNYCKae
BiLOKPEM/TOBa/IbHWUIA MOSTIHOM.

3 pe3ynbTaTiB AoBeAeHUX Y npaLi [15] nerko otpmmatuy Teopemy 3.1 HaBefeHy y npadi [14],
AKY MU CCPOPMYJIHOEMO.

Teopema 1. Hexaii npocTip X € 6aHaX0BUM MNPOCTOPOM 3 CUMETPUYHUM 6asncom. Tofi HacTy-
MHIi YMOBW € eKBiBaJIEHTHUMU:

1) npocTip X oNyCKaE BiAOKPEMNOBANbHWI NONIHOM;
2) npocTip X eizomopthHMIA A0 npocTopy ik Aana aesskoro winoro k.

3 03Ha4YeHHS BifOKPEeMIOBa/IbHOIO MOsIIHOMa BUMNMBAE, LLLO AIACHUI NoniHOM ¢ : X —R
He € BIJOKPEMIOBA/IbHMM, SKWLO q(X) 3a10BOJIbHSE YMOBY:

inf  \qg(x)-q(0)L= 0. )
xeX [IXIF
Nema 1.1. AKWO gitchuit noninom ((X) HEe € BiJOKpEeMIOBaNbHUM Ha Kyni pagiyca 1B 6aHa-
X0BOMY MpocTopi X, TOBiH He € BifOKpeMNOBabHUM Ha Ky/i JOBiNbHOro pagiyca r s X.

TBepA>KeHHs 1.3. AKLWL,0 NOAIHOM p BifOKpPeM/OBaAbHUM Ha X, TOBIH 0AaTHO abo Bif"€MHO
BM3HAYeHWUI Ha OAMHUNYHINA chepi, To6TOoabo p(x) >0 and Beix Takux X € X, wo \ |—1, abo
p(x) < 0pgnascix Takmuxx € X, wo \K|= 1.

NoeeaeHHs. OcKiNbKK cdoepa € NiHIMHO 3B'I3HOK0 MHOXXMHOLO, a BiJOKPEM/THOBa/IbHWUIA MO/TIHOM
€ HeENepepBHOK DYHKLIE, TO AKLLO 6M BiH 3MiHIOBaB 3HaK Ha cdoepi, To NpuiiMas 61 HY1bO-
BE 3HAUEHHS B AesiKil Ti TouLi, WO CyrnepeunTb 03HAYEHHIO BiJJOKPEM/IOBA/IbHOIO MosiHOMa.
OTXe, p € 3HAKOBM3HAYeHUM Ha cdoepi. O

3 TBEpAXKEHHS 1.3 Nerko BUNMBAE HACTyMHe TBEPAXKEHHS, aHANIOT SIKOro A0BeAeHWU y nNpa-
i [14].

TBepA>KeHHSA 1.4, AKUWL0 NOMIHOM P BiJOKPEMOBANbHUIA HA X, TONONIHOM PC, CKNaAeHNn 3
OAHOPIAHMX KOMMNOHEHT P NapHWUX CTeMeHiB, TaKoX € BifOKPeMIBanbHUM Ha X.

3 TBEpAKEHHSA 1.4 BUN/MBAE, LLLO SKLIO0 P — BiAOKPEMAKOBa/IbHUI NoAiHOM Ha X, To pe ¢ 0,
TOOTO p Mae HEHY/ILOBY NapHY OAHOPIAHY KOMMOHEHTY.

TBepa>KeHHSs 1.5. AKLL0 N0OAIHOM pe BiJjOKpeMAOBanbHNN Ha X, TafoaaTHUA (Big'eMHNIA) Ha
OAWHWYHIN chepi, ToNoNiHOM pet (pe_), CKNageHWU’ 3 O4HOPIAHMUX KOMMOHEHT P HeBif "€EMHUX
(HegofaTHMX) NapHUX CTENeHIB, TaKoX € BiLOKpeMOBaibHUM Ha X.

HacTtynHuin npukniag, HasegeHWIA y nNpaui [4], nokasye, Wo icHye 6aHaxiB NpocTip X 3 6e3-
YMOBHUM, asie He CUMETPUYHUM 6a31COM, KNI A0MYCKae HEOAHOPIAHWNIA BiAOKPEM/TIOBa/IbHUA
MoniHOM, XX0A4Ha OAHOpiAHA KOMIMOHEHTAa SIKOro He € BiJOKPEM/IIOBa/IbHO. pn LbOMY MpPo-
CTip X He i30MOpHWI A0 i2n Ana aosinbHOro n € N.

Teopema 2 ([4]). Hexaii X € piBHOMIpHO ONYKAUM fliicCHUM cenapabenbHUM 6aHaXo0BUM Mpo-
CTOPOM i3 cybcMMeTpuyHMM 6asncom. Hexait G € BigKpUT O NigMHOXMHOW B X. HenepepBHi
pyHKUiTHa G anpoKCUMYK TbhCA aHaANI TUYHUMU PYHKLIAMY PIBHOMIPHO Ha BCboMYy G ToAj i
nuwe toal, konu NpocTip X € 130MOPMPHUM ao f2n ANA feakoron € N.



Mpuknaa 2. Hexali n,T € N, H> T. BakocTi X Bi3bMeM0 NpsAMY CyMy NpocTOpiB i2n Ta"2m 3
BignoBigHMMM 6a3ncamn  Tag™ EnemMeHT UbOro NpocTOpy MaeBurnag x —'Y ak + ™ bgk,

k=1 o=}
abo (a\,b\, ci2, b2, mum M 0>XXHa TakoX BBAXaTU X = X\ + X2, AKLW,0 X\ — MPOeKL, A X Ha i2n, a x2

— Mpoekuia x Ha I12m. BignoBigHO, HOPMY X BU3HAYAEMO HACTYMHUM YMHOM

1 = 1IN k + HHMK,-

Hexan noniHom P BU3HAYaeThCcs HOPMY O

P(x)m=3 4 n+ = bkn= IKill?,, + 1*21€ = Pi(x) + Pi(X).
k=1 e

Nerko 6aunTw, Wo P € BigoKpemMawBanbHUM NONTHOMOM cTeneHa 2n. KoXHa 3 Moro ogHopi-
OHUX KOMNOHEHT P\ TaP2He BigoKpeMN0BanbHi.

Ona KOMNOHEHT W P2 Bi3bMeM0 Takuii eneMeHT X € X 3 HOPMOK OAUHWULSA, L0 BiH € TO-
TOXHIM HyfleM Ha 12T i \N\\en1 — 1- Togi P2(x) — 0, a, 0T>xe, NofiHOM P2 He € BijOKpemnio-
Ba/IbHUM. [ N9 KOMMOHEHT U Pi Bi3bMeMO TakuUin X € X 3HOPMOK OAUHULSA, L0 BiH € TOTOXHIM
Hynem Ha i2ni IxWMi2r= 1. Toai aHanoriyHo P\(x) = 0 i noniHOM P\ TakoX He € BiJOKpeMio-
Ba/IbHUM.

Basnc {ek,gk} e 6esymoBHUM 6a3mcom B X, ane He cuMeTpuuHUM. Cnpasgi, AKWw,o0 X Mae
CUMET PUYHMIA 6a3nc, To3a TeopeMor 2 NpocTip X i3oMoppHUIN A0 EpANS AeSSKOT0 MapHOro p.
OcCKinbKn X MiICTUTb 40N0OBHIOBaNbHY KOMito i2n, Toi npocTip Ip Mae MiCTUTUAONOBHIOBaNbHY
Konito i2n. 3rigHo 3 [20] ue MoXXNMBO TOAi i NnLLe Todi, KON p = 2n. 3aHanoriyHMx MipKyBaHb
BUMNBAE, WO P —2T, a/ie e CynepeunTb NPUNYLLEHHIO.

3ayBa>KMMO, L0 aHanoriyHo B AKOCTIi X MOXHa B3ATWU CKIHYEHHY NMPSAMY CyMYy MNpoCTopiB
i2n.gew & ni gnsak @ 1. Bubomy BUNaaKy ogHOPiAHI KOMMOHEHTU Ha | 2N, BigokpeMntoBans-
HOro NosliHoMa Ha X TaK0>XX He 6yAyTb BiAOKPEM/IOBA/IbBHUMU MOJIIHOMaMun Ha X.

Jlema 1.2. AKU,0 NONiHOM p BifOKpemaoBanbHUI Ha X Ta BCi AOr0 OAHOPIAHI KOMMOHEHT N
HeBif"'€MHO BM3Ha4YeHi Ha X, ToANna AoBinbHOTNOCNigoBHOCTI {t/n}«eN enemeHTiB npocTOopy X
3 TOro, Wo p(yn)ONpunn -> oo BUNJNUBAE, WOy, —0Npun -* oo.

JosefeHHA. MpunycTMMO NpoTu/ieXXHe, TO6TO Hexal icHye Taka nocnigoBHicTe {t/,i}neN ene-
MeHTIB npocTopy X, wo p(yn) —» 0, ane ynHe npsamye ao 0. NMepexoas4yum Ao nignocnigoBHOCTI,
MO>XEMO BBa>KaTW, L0 ICHYE Take givicHe yncno € € (0,1), wo N\N\> ¢ gnsa Bcix n. Po3rnsHe-
Mo MOC/IAOBHICTb {C,,},,€][NenemeHTIB OOAVHWNYHOI Chepu, BusHaueHy yMOBOKO Z, = jjNji ans
BCix n. ToAi

1 1 1
pM =E u ~ | ] 7T xk P * (Y " ) 7~ nmpn n-*m™,

e m— cTeniHb NMosiHoma p, a P~ — oro ogHopigHa KOMMNOHeHTa cTeneHs K. Lle cynepeunTb
TOMY, WO P BiAOKPEM/IIOBa/IbHWUI NOAIHOM, OT>XKe, Hallle NPUMNYLLEHHSA He BipHe. O

HaBegemo nNpukag BifOKPEeM/HOBa/IbHOIO MOMIIHOMA, SKUI 3MIHIOE 3HAaK B CepeanHiI Kyni.

Mpuknag 3. Hexan X = i2. 4na x = X Lekxk € ~2po3rngHemo noniHom p(x) = Y/A2x4 —x2.
k
Nerko 6aunTwn, Wo p — BigokpematBanbHUii noniHom Tap(l) = 1. OcCKiNbKN X4 NpAMYEe 40

HYNs WBUALIE, HIXX X2, TO ICHYIOTb Cpepun MeHLWoro pagiycy (W,0 He nepesnyTh -I), Ha
AKUX P € HY/IbOBMM Ta Bif'€MHUM.

Teopema 3. Akwo F : X — Y noniHomianbHnin aBTomopdism (NoniHoMianbHe GiEKTUBHE Bi-
fobpaxeHHs Take, wo F' I —noniHom 1aF(0) = 0), p : Y —=R BifoKpeM/0BaNbHU NONIHOM
Ta BCi A0r0 OAHOPIAHI KOMMOHEHT W HeBig'eMHO BM3HayveHi Ha Y, Togi p(F) : X -> R 6yge
BiJOKpeM0BabHUM MOMTIHOMOM.

JoBefeHHA. Bigomo, Wwo KoMNo3uuisa nofiHoMiasibHUX Bigo6paXkeHb € MofiHOMiaslbHUM Bifo-
6paxeHHaM, Tomy p(F) e noniHomom. Kpim Toro, p(F)(0) = 0. Mpunyctumo, wo p(F) He €
BiJOKpeM/II0Ba/IbHUM MOJTiIHOMOM. Togi iCHYye Taka nocnifoBHIcTh {X,,} eneMeHTIiB OANHUNYHOI
coepu B X, wo p(F({xn})) -¥ 0 npu n —y oo. Hexanm F({xn}) = {y,,}. Ockinbkn p 3ano-
BO/IbHAE yMOBM nemun 1.2, 7o {yn} — 0. OcKinbku F : X — Y noniHoMianbHWi aBToMOpPdi3mMm,
To F-1{yn} = ixn} “m 0, wo cynepeuntb BNU60OPY {X,,}. OTXe, p(F) — BigoKpemntoBaIbHUN
NONIHOM. O

HacTynHa Teopema ysaranbHioe npuknag 1.

Teopema 4 ([12]). Hexain 1 < p,q < +00. ToAi HaCTYNHI TBEPAKEHHSA € eKBIBaNIEHTHUMM.
1L MpocTip X = (0 “=itq)epaonyckae BifoOKpeMAOBaNbHNA NOMIHOM.
2. O6naBa p i q€nNapHUMK LiNMMK, Tap € KpaTHE q.

Teopema 5 ([12]). Ana 1< p,q < +o00 po3rnsaHemo npocTip U(L™). Togi HacTynHI TBepAXKeH-
HS € eKBiBaEH THUMN.

1 MpocTip LP(U) gonyckae BiaoKpeMAwBalbHWi NOAIHOM.
2. O6naBa p i q € NapHUMK LiTUMK, Tap € KpaTHE q.

1.2 Cnabko noniHomiasibHa TOMOOriA | BifOKPeM/1ioBas/1IbHI NO/TIHOMM.

BusHaunmo cnabko noniHomiasbHy TOMOMOri Ha AiIMCHOMY 6aHax0BOMY NMPOCTopi X K Hal-
cnabwy Tononorito Wp, BiHOCHO AKOI BCi HENepepBHI NOMIHOMU Ha X 3i 3Ha4YeHHAMM B noni R
€ HenepepBHUMU. Lia TONonoris NnopoaXyeTbca npoobpasamMmm BiAKPUTUX MHOXUH 3 R noni-
HOMiaIbHUX DYHKLUiOHaNiB Ha X. basy i€l Tonosoril yTBOPHOKTL OKOMM TOUOK X0 € X, KOXeH

3 AKMX 3a/1eXXNTb Bif CKIHUEHHOro Habopy NOMIHOMIB pi,...,pNi gogaTHUX vncen £\,... g, Ta
Ma€e BUTNAA;:
Wxo)pi™*p« = {x € X: IPi(*) - Pui(*o)] < ev ....\pn(x) - p,»(x0)] < £,}m 3)

HanpsamneHicTb (xa) 36iraetbca y Tononorivi Wp ao xo € X toai (i Tinbkn To4i), Konm p(xa)
p(x0) ans KoxHoro p € V(X).

Teopema 6 ([2]). Cna6ko noniHOMianbHa TOMONOTis HA AiiCHOMY NpocTopi X cniBnagae 3 To-
MoIOried HOPMU TOZi | TiNbKN Togi, KON Ha X iCHYE BiJOKPEMI0BaSIbHUIA NONIHOM.



3ayBaXXMMO, L0 OCKiNbKW HENEPEPBHI MOMIHOMU PO3AiNs0Th TOUKM NPOCTOPY X, TO cnab-
KO noniHOoMianbHa TONOMOria € raycaopdosoto. Tomy, 3a TeopemMoto CToyHa-Belieplutpaca
(ams. [7, Teopema 3.2.21]), koXXHa Wp-HenepepBHa PYHKLiA Ha X HabNMKaETLCA MOMiHOMA-
MW PiBHOMIPHO Ha KoMMakTax Yy Tononorii Kp. Y Bunagky, Konm X gonyckae BigoKpeMsito-
Ba/IbHUI noniHom, LLp-komnakTn € komnaktamu B (X, |- |D | MatoTb NOPOXXHIO BHYTPILLHICTb,
akwo dimX = oo. NpoTe, came B UbOMYy BMNaaKy (Teopema Kypupeins) KoXHa piBHOMIp-
HO HenepepBHa (pyHKLUiA Ha X anpoOKCUMYETLCA aHaMITUHHUMU (PYHKLIAMU PIBHOMIPHO Ha
BCbOMY MPOCTOPi. MOXIMBUI iHLWINIA KpaWHii BUNAAoK, KON C1abkKo nosiiHoMiasnbHa Tono-
noriga cnienagae 3i c/1abKoK TOMOJIOTIED HA 0OMEXeHUX MHOXUHaxX. ToAi 3aMKHeHa Kyns B
Bx € X € T0p-BiAHOCHO KOMMaKTHMM NPOCTOPOM i TeopeMa CToyHa-BeliepLuTpaca rapaHTye,
WO KOXXHa *-cnabko HemepepBHa PYHKLIA Ha BXxn anpoKCUMYETLCA MOIIHOMaMKU PIBHOMIP-
HO Ha BY. MpoTe i B LbOMY BMMaAKy MOXe TpanuTuch, Wo X A0MycKae pPiBHOMIPHO aHaniTn-
YHY BifOKpeM/toBa/ibHY (DYHKLUIIO (AK Hanpuknag X = co) i KoXXKHa piBHOMiIPHO HenepepeHa
YHKLUiISA anpoOKCUMYETLCA aHaTITUHHUMK piBHOMIpHO Ha X [9]. 3 iHWoro 60Ky icHye 6arato
MpPocTopiB (K Hanpuknag | p ana HenapHWX p), Ana SKux WH € CTPOro CU/bHILLIOK 3a cnabky
TOMOJIOTit0 Ha 06MEXeHNX MHOXMHAaX i CTPOro cnabLuolo 3a TOMoJsIorito HOPMU i B AKUX He KO-
YKHa HenepepBHa PYHKL IS HAGNMKAETbCA aHaNiTUYHMMM Ha X. Lli npnknagm nokasywTb, WO
anpokcmMayis aHaniTUYHUMU (PYHKLIAMUW CYTTEBO BiAPI3HAETLCA Bif NOMiIHOMIaNbHOT anpo-
KCMMauii i YMOBM iCHYBaHHA Takoi anpokcumauii CyTTEBO BigPI3HAKOTLCA BiJ YMOB TEOpemMu
CtoyHa-BenepLuTpaca.

Jo6pe Bigomo, WO Yy HeCKiIHYEHHOBMMIPHOMY 6aHax0BOMY MPOCTOPiI OAMHUYHA cdhepa €
LLLINBHOK B OAVHWYHIN KyNi y cnabki Tononorii. HacTynHa TeopeMa nokasye, Wo nNpu neBHMX
ymoBax Wp mMae Taky > BnacTUBICTb.

Teopema 7 ([2]). Hexalh X — HeCKiHYEHHOBMMIpPHWIA filicHMiIA 6aHaxiB npocTip. OAnHNYHA
cpepa SX € LWL iNbHOW B OAMHMYHIN KyNi B y cnabko noniHoMianbHi ToMonorii Togdi i Tinbku
TO4i, Konn X He LONYCKae BiJOKPEMNOBA/IbHOT0 MONIHOMA.

2 PiBHomipHO aHaniTuuHi i Bigokpemnro BanbHi PYHKLIT

Y npaui [9] BBefeHi B po3rnsas piBHOMIPHO aHaNiTUYHI | BiJOKpeMatOBaNbHI OYHKLUIT Ha
6aHaxoBMX MPOCTOpPax.

O3HauyeHHs 2.1. Hexail X € jilCHUM HOPMOBaAHUM NPOCTOPOM. ByaemMo roBopuTMU, LW O AilicHa
pyHKUiA d, BU3HaYeHa Ha X, € pIBHOMIPHO aHaNniTUYHOK i BIAOKPEMII0BA/IbHOI, KL O BOHA
3a[0BO/IbHAE HACTYMHI YMOBU:

1) d e gilicHO0 aHaniTU4YHOW (PYHKLiE Ha X 3 pagiycom 36iKHOCTI R™X B KOXHIA Touui
X € X 6ifbwinm abo pisHuM 3a Rj gna geakoro Rj > 0;

2) icHye Take a € IR wo MHOXMHA {X € X : d(X) < a} € HENOPOXHbLOKW TAJIEKUTb Y
BIAKPUT I OQMHUWYHIW Kyni B.

3 yM0BU 2) BUMNMBAE, WO iCHYe Take X0 € X, wo d(xo) = B < a. Bpaxosytoun aHanitu-
YHICTb, 3 YMOBU 2) BUMNANBAE, WO iCHYE Take X € IR wo MHOXMHa { x € X : d(x) > a} He
HaneXXMTb OAUHUYHIN Kyni B.

Teopema 8. Hexail X € cenapabenbHUM fiicHMM 6aHaxoBMM nNpocTopom. Ha npocTopi X icHye
PiBHOMIPHO aHaniTWYHa i BifJoKpemnoBanbHa PYHKL IS, AKLL 0 BUKOHYETbCA 0HA 3 HACTYMHUX
YMOB:

1) Ha npocTopi X iCHY€E BiLOKPeMI0Ba/IbHUIA MNONIHOM;
2) npocTip X € 3aMKHEHUM MiANPOCTOPOM B cq.

NosegeHHsa. 1) Hexali Ha npocTopi X iCHYE BiAOKPEMAOBaNIbHUM noninom P. Togi Ha X, 3rigHO
3 TBEPAXKEHHSAM 1.2, iICHYE HEBIA'EMHMNIA OAHOPIAHWI BiAOKpPEMNOBa/IbHMIA noniHOM d. Pagiyc
36IKHOCTI d = 00, OTXKe YMOBa 1 03HaYeHHSA 2.1 BUKOHYETbLCA. 3adpikcyemo a = 1. Toai /18 BCiX
X €X, K < 1, d(X) nexxnTb y BIAKPUTIA OAVHUYHIN Kyni B. TaKUM YUNHOM YMOBa 2 03HaYeHHSA
2.1 BUKOHYETbCA. TOMY d € piBHOMIPHO aHa/liTUYHOLO | BiAOKPEM/THOBasIbHOK DYHKLIELO.

2) B [13] nokasaHo, W0 HacTymnHa aHaniTU4YHa PyHKuisA

2n
d({Xn)nebs) —Y . (%n)

n=1
ANs foBinbHOro (xm)mem € 3agae aHaNITUYHY HOPMY Ha cq. JIerko 6aunTu, wo I m|joo-pagiyc
36DKHOCTI d B KOXHIN Touli X, € @ aopiBHIOE ognHMLI (Hanpuknag, ave. [21, npuknag 5.5]).
TakoXX 3ayBaXKUMo, L0 d € BiJOKPeM/II0Ba/IbHOK PYHKLLIEKD, a came:

0 € {(x,,).en £ Go, :d((x,,)neN) < 1} C B

OckKinbkn aoBinbHWIA nignpocTip B & XxapakKTepu3yeTbCs iICHYBaHHAM HOPMYHKOUOT *-cnabko
36KHOT A0 HY/1A NOCNIAOBHOCTI HA OANHUYHIN Ky CIIPSXXEHOro NpocTopy, TO TaKUM caMuUM

METOAO0M, AK B CO, OTPUMAEMO (PYHKLLit0, iIKa € PIBHOMIPHO aHaNiTUYHOIO | BIOKPEM/TIOBASIb-
HOHO. O

3po3yMmino, Wo yMOBM iCHYBaHHSA PIBHOMIPHO aHaNiTUYHOT i BiJOKPeMIOBaNbHOT PYHKLLIT
YyCNaAKOBYHTbLCA CKIHYEHMMU MPAMUMW CyMaMW MPOCTOopiB. 3a BiAMOBIAHMX O06CTaBUH MO-
YKHa TaKOoX MeperTn A0 HEeCKIHYEHHUX MPSMUX cyM. Hanpukniag, npunycTuMo, LWo BCi ue-
HU nocnigoBHocTi 6aHaxoBmx npoctopis (X,,, |- 1I.).€ N gonyckawTb piBHOMIpHO aHaniTu-
YHi i BifOoKpeMatoBasibHI (pyHKUiT (dn)ne u, 3 pagiycamu 36ixXHOCTI (Rn)ne n - MpunycTrmo, Wwo
Ri := r'lS]];\IR > 0 Wo icHye Taka NOC/MiAOBHICTb A0AaTHMX Linnx uncen (an)nejn, Lo

sup sup MA' <1 1ta supdiamr  ((—o0,1))J < +00,
"GNv (") "6N

fe &~ e komnnekcudikaugieto ans dn. OTxe, gna X = (®“=1X,,)®

(@ N ®
(IXn | d((xn)n€ jsj) := 22 dn(xn)2en
n=1 / 0 n=1

d € piBHOMIPHO aHaNITUYHOIO | BIJOKPEM/TIOB/IbHOK (PyHKLiEt0. ToOMy, Hanpukiag,

(cC0PD~=i4 «)®

[ONYyCKae PiBHOMIPHO aHa/TITUYHY | BILOKPeM/TIOBa/IbHY (DYHKL,itO.



OcCKiNnbKuM rnoBHa Knacudikayisa NnpocTopis, WO A40NYCKalTb PIBHOMIPHO aHaliTUYRHY | Bif-
oKpemntoBasibHY OYHKLUiK, € 40BOMI CKNagHUM 3aBAaHHAM, TO CrPo6yemo 1i oTpumatu ans
OKpeMUnX BUNagkKiB, Konu, Hanpuknaa, CqyMAX abo £pé+X Ans KOXXHOro napHoro p.

Mepwnin BUNagoK NpPMBOANTL A0 NPOCTOPIB 3 BigOKpPeMOBa/IbHUMM nofiHomammn [10].
Locnianmo apyruii BUNaaokK.

Teopema 9 ([9]). Hexali X € 6aHaXx0BUM NPOCTOPOM, Ha AKOMY iCHYEPiBHOMIPHO aHaNi TUYHa i
BifoKpematoBanbHa pyHKLUiA. MpunycTUMO, L0 BCi CKanapHi noniHoMK Ha X Bigobpaxatw Thb
cNnabko 36KHI 40 HY /1A MOCNIZOBHOCT i B 36iXHI 40 HYNA NocNifoBHOCTI. Togi X € i30MOpHUM
[o NignpocTopy B C.

3a pesynbtatamu [22, 24] npocTopwu 3 BnactmeicTio Adamdhopga-leTica (30Kkpema, BCi Npo-
CTOpU HerepepBHMX Ha komnakTi K dyHkuii C(K) i Bci nignpoctopu B C0) 3a/,0BOJIbHAIOTH
3rajjaHy BULLE YMOBY CEeKBEHLIiaNIbHOI HENePepPBHOCTI NONIHOMIB.

3ayBaXeHHSA 2.1. MoXxHa nokasaTu [16], W0 AKLLO0 3aMIHUTW MPUNYLLEHHA PIBHOMIPHO aHa-
NiITUYHOTI BigOKpemMnwBanbHoOT PYHKLITB Teopemi 9 Ha iCHYBaHHA PIBHOMIPHO aHaNiTUYHOT i
BifOKpemMntBanbHOT YHKLiTHA BIAKPUTIiA 06MeEXKeHin NiAMHOXMHI B X, TO 3BifCK BUNNNBA-
TuUwme, W o X e cenapabenbHMM noniegpanbHUM NPOCTOPOM.

Mpuragaemo pesynbTaTt [19], AKWii cTBepaXYE, WO KoxeH C(K) npocTip, AKuin i3oMop-
hHMIA JO NignpocTopy B Co, € I30MOPGHUIA [0 Co-

Hacnigok 2.1. Hexait X € 6aHaxoBuM nNpocTopom, sikuinisomopdHuii go C(K) igonyckaepis-
HOMIPHO aHaniTUYHY i BijoKpeM K BanbHy PyHKLUit0. Toai X € i30MOPHOHUM A0 Cq.

3ayBaXKeHHS 2.2. Lleii Hacnigok MoXKHa nopiBHATY 3 [11], 4e noKasaHO, L0 KOXKeH cenapa-
benbHMMNoniegpansHMii 6aHaxosuii npocTip (Hanpuknag C(K), e Ke ToTalbHO He 3B*A3HWIA)
AONYCKae BifOKpeMNOBaNbHY aHaNiTUYHY ONYKNY (PYHKLIO, BU3HAYEHY Ha fedaKin o6Mexe-
HiA ONYKNIA MHOXWHI.

Teopema 10. Hexain X TaY giicHi 6aHaxosi npocTopn,f :Y -* R €piBHOMIPHO aHaNi TUYHOW
i BiJOKpPEMIIOBaNbHOW PYHKLIie Takow, wo /(0) =0, g : X —YY — NiHiilHe Bigo6paXKkeHHH,
o He 3MeHWYeE Hopmy. Togi komno3nuiaf og : X —mR € piBHOMIPHO aHaniTUYHOW i Bif-
OKpeM/IloBaNibHO PYHKLIED.

[osegeHHA. Mo3Haummo fo g yepes g. PyHKUiA g Oyae aHaTITUYHOK K KOMMO3MLLiS ABOX aHa-
NITNYHNX YHKLIN. MepeBiprMO, WO BOHa 3a40BOIbHAE YMOBW 03HAUYeHHs 2.1.

L Hexaln x — pgoBinbHa To4dka npoctopy X. Ona HopMu k-ToT KomnoHeHTU gk = fk(g)

po3knagy yHKLiT g B pA4 B OKOMI TOYKU X, MM MAEMO OLLIHKY

)<,

ne fk — k-Ta KOoMNoHeHTa po3knagy YHKLUIT g B okoni Touku g(x). Hexaln pagiyc 36iXKHOCTI
R/ B KOXHIW Touliy € Y € He MeHLIMM, Hi>XX R/(0). OuiHnumo, pagiyc 36iXXKHOCTI RgX pyHKLUIT
g B TOUL X :

=limsup |#t] It = limsup CIZENEIR * = lilllimsup (IMEIlF = -M -.
a

K gx k-»o00 4 k-> 0o fg(x)

OTXe,
> 31.>0
1*11 nisll
2. OcKinbKu / € piBHOMIPHO aHaNITUYHOLO | BiAOKPEMNOBaNbHOK DYHKLIEND, TO iCHYE Take
umcno d €E R, wo {y €Y : f(y) <a} C By. Hexan x € X Tag(x) < a. Togif(g(x)) <
i ToMy g(x) € By. OCKiNlbKM BiJOOpaXeHHS g He 3MeHLlYye HOpMY, TO x € Bx. Kpim TOr0,
OCKIiNIbKM g — fliHiliHe Bigo6paXkeHHs, To g(0) = 0iTomy g(0) = f(g(0)) = Z(0) = 0. O

TBepAXeHHSA 2.1. P0o3rngHeMO niHIMHUT OpOCcTip X = xi 2k, AKUI € HECKIHUYEHHO Nps-
MO CYMO MpocTOopiB i X AKLW 0 Ha X 33aTUEP HOPMY 33 POPMYJI0H

IWI=(DMU ' x=(Kex, @

TOANA HenapHOro p > 0npocTip X 3 TaKol HOPMOIO He 6y /e oNycKaTU Hi BifJOKpeM 0 Basib-
HOTO MONIHOMA, Hi PIBHOMIPHO aHaNi TUYHOTi BiJOKPeM/II0BanbHOT (PYHKL,IT.

JosefeHHA. Hexai Xo — nignpocTip B X, iKW CKNafaeTbCs 3 eNeMeHTIiB BUrnagy x = Y/AXK,
gek e N, Xk € 1% X = (a¥0,...,0,...). Togi ana gosinbHoro x € Xo 3a ymosow K| =

(Z eK\p) VP mTomy Xo € izomopdHUM A0 £p. OCKiNlbKM Ha £p 418 HEMNAPHOIo p He iCHye Bifa-
OKpPEeM/IKOBa/IbHOIo MosliHOMa, TO Takoro nosiiHoMa He icHye i Ha X. | OCKiflbKM Ha £p ong He-
MapHOro p He iCHye PiBHOMIPHO aHaNiTUYHOI i BifoKpematoBanbHOI ddyHKUIT (60 iHaKLue, 3a [9,
Teopema 1] Hopma npocTopy £p anpoKcumyBanacb 61 aHaTITUYHUMWN (PYHKLIAMUA, LLLO He TaK
[17, cT. 227], TO TaKoi PyHKLLIT He icHYyEe i Ha X. O
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We present basic results of the theory of separating polynomials, uniformly analytic and sepa-
rating functions on separable real Banach spaces. We consider basic properties of separating polyno-
mials, uniformly analytic and separating functions. We indicate a relation between weak polynomial
topology and norm topology of a space, provided itadmits a separating polynomial. We present suf-
ficient conditions for the existence of analytic and uniformly separating functions. We investigate a
composition of an uniformly analytic and separating function and a linear mapping.
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CONVERGENCE IN i/[0,27r-METRIC OF LOGARITHMIC DERIVATIVE AND
ANGULAR u-DENSITY FOR ZEROS OF ENTIRE FUNCTION OF SLOWLY GROWTH

The subclass of a zero order entire function / is pointed out for which the existence of angular
v-density for zeros of entire function of zero order is equivalent to convergence in £/['0, In]-metric

of its logarithmic derivative.
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Introduction

Let L be the class of all positive non-decreasing unbounded continuously differentiable on
[0, +00) functions v such that rv*(r)/v(r) -> 0as0 < r0 < r -) +00. It is known (see [1,
p. 15]) that the class L coincides with the class of slowly increasing functions accurate to the
equivalent functions. By HO(v), v € L, we denote the class of entire functions /7 of zero order
forwhich0 < A = rI;I_Ir{n)on(r)/v(r) < + 00. Without loss of generality we assume that /(0) = 1.

We will say that zeros of function/ €HO0(v), uelL, have an angular v- density, if the limit

_ iy N(r, OLB)
(5 ) = lim, 5

exists for all a and B, that do not belong to some no more than countable set from [0,2T].
Here n{r,DL\3) is the number of zeros an of the function /, which lie in the sector {z: H < r,
a<argz<@p},0<a<p<2n.

We also denote by F(z) = z-fjl(—f)r the logarithmic derivative of /, by £n the family of all
[

measurable sets G C IR+ such that lim mes(GIM [0, r])/r<n0<n< 1l
r_

Theorem ([21). Letve L,f € HO(v) and zeros of the function f have angular v-density. Then
there exists aset G € £,, such that, for arbitrary p € [1, +00),

F(rew) —n(r)
v(r)

-0, r->+00, rf£G
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The converse statement is false. The question is under which conditions for / € Hq(v)
from the convergence in 1/[0,21]-metric of the function F the existence of angular u-density
of zeros of / will follow. We note [3], that in the case of an entire function / of non integer
order p > 0 the existence of angular density of its zeros is equivalent to the following

F(rew)

t t E
o 809 Y0 ryroo cEGGEen,

where p € [1, +00), ge | r[0,27r], p(r) is the proximate order of /Z, p(r) —p,r —+oo0.

In this paper we will point out the subclass of entire function /7 from the class Hq(v), for
which the existence of angular u-density of zeros of the function / will be equivalent to the
convergence of the logarithmic derivative F in LP[0,2 {t]-metric.

1 Main results

Let us denote by Tm — (J {z: argz= OA — |] |gl., —n < 6\ < 02 <mmm < 0m < T, the
j=1 7=1
finite system of rays, by n{r, 0j',f) = n(r,0j) the number of zeros of/ € Ha(v) lying on the
ray 1g. = {z: argz = oj} and modules of which do not exceed r. Letnjo) = (8 —Tm — 0j),
0j < ©< 6j + 271, and nj(o) be its periodic continuation from (9j,0j + 21m) on R, j — 1, m. For
v € L we set

(1)
w =/ N -dt.

It is easy to see that v € L and v(r) = o(v(r)) as r — +o0.

Theorem 1. Letv € L, f € Hg(v). Suppose that zeros of the function f lie on the finite system
ofrays Tmand foreachj =1, m & >0

n(r,0j) = Ajv(r)+o(v(r)), r -> -boo. 1)
Then
F(re'e) —n(r) F(rew) —Av(r)
v(r) t>(r) IH,(8) @
m m
where Hf(0) = Z kjhj(0), A= Z A.

Theorem 2. Let G € L1[0,2n], v € L, f € Hq(v). Suppose that zeros of the function f lie on
the finite system ofrays Tmand

F(rew) —n(r)

iG{0) €))
W)

2n
Then zeros of the function f have an angular v-density, moreover f G(0)d0 = 0.
0

2 Additional results

To prove Theorems 1, 2 we will use the following results, which we formulate as lemmas.

Lemma 1 ([1]). Letv € L. Then fork €N
+00

rk J dt = \v(r) + °(v(r))" r +ee!
r

r

r~kf p~dt = ~v(r)+o(v(r)), r->+ QD

Lemma 2. Letv €L, e(t) be afunction, locally integrable on [1, +00), and (i) —» 0 as t — +00.
Then fork €N
—+D |
e(f)v(t)
JkJ “(/ dt = °(vir))' r D +00
r

J dt = O(v(r~f r _4 +00-

The proof of this lemma follows from applying L'Hopital's rule.

Let Cjt(r, @), k € Z, be the Fourier coefficients of function ®(re,e) as a function of 0, that is
i 21

ck{r'®) = EFB O {rers)e~ikg, r > 0.

Lemma 3. Leiv € L,f € Hq(v), zeros of the function f lie on the finite system ofrays Tmand
(1) holds. Then there exists vy > 0 such thatfork € Z \{0} the relations

ck(r,F) ——-v(r) + o(v(r)), r y+00,

21 ~
\K(r,F)\ < wa(r), r>r0A>0,Ak>0,
hold.
m
Proof. Since nk(r)= = e 1 >n(r, 0j), owing to (1) we have
)=i
nk(r) = Akv(r) + o(v(r)), r->+00,
where Ak = X & i
/=1

From formulas for calculating the coefficients ck(r,F) [2, Lemma 3] and the last identity,
using Lemma 2, we obtain

+0° +0O +@O
ck(r, F) = nk(r) —krkJ ~~n~dt= Akv(r) + o(v(r)) - KAkrkJ ~dt - krkJ  4q dt

-f-00 \ -f-oo__

Afd;(r) - kAkrk + 1] ;Tﬂ J+ o(v(r)) = -~AkrkJ ~dt + o(u(r)), ke N,



asr —+ 00.
Similarly, fork € Z, k < 0,

c(r,F) =41 jj~dt+oMp)), r->+oo.
From this and Lemma 1 we have

Ck(r,F)--—--—-- yu(t), r-> +00

lafcrP)l < wir), r>ro.

L]

3 Proof of the main results

Proofof Theorem 1. We set
1 » % 1 . . .
h:=ct(Hf) = — "£AjJh,(e)e-*<lde = — "£AIl | hi(e)e-ikede

j-1 0 j-1 C)

@
, koo,
;=i [0, €= 0.

Therefore K] < Iq k ¢@ 0. Since, by Lemma 3, |c*(rF)] < /"(r), the sequence

N
Cici”F) % |  belongs to the space L| with g > \,r > Tg. We have
u(r) k~O

ck(r,F(z) -n(r)) =ck(r,F) for kd O.

Thus by Hausdorff-Young theorem [4, p. 153] forp > 2, —+ - = 1,

F(rel9) —n(r) . qor/F) ..
o) - iH,T <||\/zo o ibi

Since the resulting series is uniformly convergent for all r > ro, by making the limiting
transition as r -» +00 in the last inequality and owing to Lemma 3 and identity (4) we obtain

F(re ig —rn/(\r)_ "H /W 0, r > +00,

for p > 2. By Holder's inequality |- b < |- IFforl < 2 < 2, thatis (2) is also valid for
1< p < 2 The Theorem 1is proved. O

Proofof Theorem 2. Let us denote by gk the Fourier coefficients of function G, namely gk =
Cfc(G). Then, by (3), we obtain
2n

ck{r,F)-n{r) ck(rrF-n(r)) f. { f F{relg) —n(r) . i
v(r) 4 v(r) ISk 5 nJ (1 f(r) IG(B)\ e~ikede
2r[F( 19) —n(r) F{rei®) - n(r)
rel9) —n(r rei® - n(r
—j 9 < -
< om v(r) 'G(0) ¢ vir) G0
asr  +00.Since Co(r, F) = n(r) from the last relation we find go —0, that is
2n
J G(0)do = 0.
Fork @ 0 owing to Ik(r) := ck{r,In/) = f we obtain
0] t

< f ck(t,F)/tdt

. ck(r,F) .0 . ck(r, Inf)
Igk = lim = lim — - = lim . (5)
r—»+00 V(r) r-»+00 rr-»+o0o(r)
f v{t)/tdt
By identities (see, for instance, [5, Lemma 1])
+°0 +H<*
n(r,0;) _
oy df k= \m,
r — r

we have the linear system of equations with respect to the quantities n(r, 9j), ] —1, m,

IZ” e~ in(r. Of) = rl[(r) - h(r),
i=1

ﬁe -tBn(rl0j) = rl2(r)-212(r)f

)=1
2 € imein{r,0j) = nM{r) - mim{r).
U=i
Since
N it-2
p—i0\ p—iX2 £—26,
o 0,
g—imo\ e~iTB2 ¢-imo,,
we have
«M ;) = T bkj(Mk(r) - Kir)) = £ bkj(klk(r) - cjt(r,F)),
=] fc
where bkj € C. Taking into consideration (5) and the last identities we obtain forj = I, m
m m
n(r,0j) = (L + o(l))i X] bkj(kgkv(r) - gkv(r)) = i Z bkjkgkv(r) + o(u(r))
=1 fc=l

A;-y(r) + o(u(r)), r->+00.
Hence, zeros of the function / have an angular ~-density. L]
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Revised 11.12.2015 1 Introduction and Preliminaries

The main aim of this paper is to generalize the Theorem 1 in [3].

Leta > zy,c> [ > and Ja,P(x) := (2sinhx)2a+1 (2 cosh x)2™+1 for x € 1IR+. We define
LK « (R+) ;= W K+,T*(*)<IX)/1 < p < 2, as the Banach space of measurable functions f(x)
on 1R+ with the finite norm

3ab6onoybkunii M.B., MoctoBa M.P. 36ixHicTb BU[Q,2n\-mMeTpuyi norapudmivyHoT noxigHoT i kyTosa
U-WiNbHICTb HYNIB Linoi yHKLii noBinbHOro 3pocTaHHa // KapnaTcbki matem. ny6n. — 2015. — T.7,
Ne2. — C. 209-214.

BugaineHo nigknac winnx pyHKLWin / Hynb0BOro nopsigKy, Aas AKUX MOHATTA iCHYBaHHSA KyTOBOT V41 («J'I - L|, +° /W I'T A * ) *). -
M-WiNnbHOCTI HyniB/ Ta 36ixkHicTb B U [0, 21]-MmeTpuui 1T norapudgpmivyHoT noxigHoT € piBHOCUNbHU-
MW,
Let
Knouosi cnosa i hpasun: norapundmivHa noxigHa, wisia PyHKLif, KyToBa WiNbHICTb, KOeMiLieHTHN
®yp'e, NOBINLHO 3pocTaoya yHKLis. Da'P:= + ((2a+ 1)c°sx+ (2£ + H)tgx)™
be the Jacobi differential operator and denote by (x), J1 € C, x € 1R+, the Jacobi function
of order (a, B). The function (x) satisfies the differential equation

(&,p + A2+ D2)@™ /B (x) = O,
wherep=a+ [+ 1.

Lemma 1.1. Leta > 3 > y,0. @ p=a+f+ 1 andlet X0 > 0. Then for \\\ < p there
exists apositive constant C\ = Ci (q, 3, X0) such that

i - Wp+10OO\N"™ Cr\XL- Ja(ux)\,
forall0 < x < Xoand p € TR where ja(x) isanormalized Bessel function of the firstkind.

Proof. (See [2], Lemma 9). O

© El Ouadih S., Daher R., 2015
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Inif, ,, (R+) consider the Jacobi generalized translation 7}

n\-00

Thf(x) = yo /@/CapXK z)laP{z)dz,

where the kernel JCa™ is explicitly known (see [5]).
The Jacobi transform is defined by formula

7(8) =3Q JT(X)OK B\ X) T B{x)ax.

The inversion formula is

/() ="NJQ ANWANPlIX)MV,
where au{A) =] C(A) |-2 4\ and the C-function C(A) is defined by
cw = 2PC(LMF(MN @A + 1)
Frp+ 1A A +11)-n'
We have the Young inequality
/1, wWs» < K|ylipw), Q)
where i + 1 = 1and K is positive constant.
We note the important property of the Jacobi transform: if / € LR~ (R +), then

DA7(A) = -(A2+p2)/(A). %)
The following relation connects the Jacobi generalized translation and the Jacobi transform:
W (A)=«i'Wf)/Z(A). ©)
The finite differences of the first and higher orders are defined as follows:
MM =T (x)-f(x) = (T,,- DF(X),

where | is the identity operator in N (JR+) and

M) = DDE7 (X) = (T, - Dk(x) = /(X ()

i=0
where = fix), rhf(x) = ThiT~fix)), i=1,2.... kandk = 1,2,....
The fc-th order generalized modulus of continuity of a function /7 € "N (R+) is defined

by
fW ,£) = sup IIAjZI1IM), <5>0.
0<h<S

Let Wp'(Da) denote the class of functions /7 € ~ (R+) that have generalized derivatives
in the sense of Levi (see [4]) satisfying the estimate

nkKff.S) = 0(o (i*)), S->0;
ie.,
WAMDAN) ={/ ELM (R+):D~fELN}R+)and Clk(DN™f,5) = 0(cp(Sk))r d -> 0},

where @(x) is any nonnegative function given on [0, 00), and Da™f = /, D~/ = DKMDr~}f);
r=12,...

2 Main Results

In this section we estimate the integral

AD _
NHM)\4u(\)
JN

in certain classes of functions in N (R+).

Lemma 2.1. Leta > > ~oc ® =£,p=a+ B+ I, and letf EL " (R+). Then

iTV +Ant .

wherel < p < 2andnsuch thati +1 = 1.
Proo/. From formula (2) we obtain
DiZ(A) = (-I)'(A2+p2r/(A); r=20,1,... (5)

We use the formulas (3) and (5) and conclude

4 N fW = (-iY(<pfAw Yy~ 2+p2)fW - i<<<*. (B)

From the definition of finite difference (4) and formula (6) the image AND”f(x) under the
Jacobi transform has the form

tfpQ m = (-ir - d(a2+ )7 (a).
Now by the inequality (1) we have the result. O

Theorem 1. Leta> B > =Na. @ =E,p=a+ B+ landletf €W ~D ™). Then

SUP (L |/WNe (A)V=o(n 2> ((i;)*))

WAD.OKN
wherer = 0,1,2, . . k — 1,2, . . ¢ > 0is a fixed constant, and cp(t) is any nonnegative

function defined on the interval [0, 00).

Proo/. In the terms of ;a(x), for the normalized Bessel function of the first kind we have (see

)

I-/«(x) = 0(), x>1, ()
1-/«(*) =0(x2), 0<xc<I, ©)
Vhxdu(hx) = 0(1), frx >0, )

where Ja{x) is Bessel function of the first kind, and

W = (10)
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Let / € Wpk (Dadjg). By the Holder inequality and Lemma 1.1, we have

ree n /o0

by VO A) = 1 ARIA)I(R) = fr (1 -5 (A/D)I/(A) 1% (A)

[« (1-1.(Aft)) ([/(A)] 1CA) |i), A

/7 (-« (A4) (/A 1CA) [1) -7 (/A 1CA) [T)7Mn

qg<c-1 i
£ (/“1/(A)N(A)) ' LI- *
753
. " (/I /R0 AT L. M« (AJINIZTAIITNIA)
tfc-l i
(N2+ p2)t: f r@®
a /7 U/ (AYNe (A)) ° (/7 “ (A2+P2)INL - 2<*NTA)I" i/(A)Ne (A)) * -
In view of Lemma 2.1, we conclude that
/=0 . .
yw (A2+ p2n 1- AP 1 /(A)Ne(A) < KTIATGN/ M 1IN,
Therefore
AD N pco
I /(A)Ne(A) < [ (A |*<W(A)

N

Ci 71/ (A)Ne (A)) 7 HIAD() T LGw.

From formulas (9) and (10), we have jK(Ah) = 0((A/{)~0c~(). Then

/@/\
/  \/(A)\4p(A
FORUAROY

=07/ " (AL | /(ANe(A) +N-Y (/% [/(ANGA) A K o/ mu' W)

=0 i/ /AR +N-L (/7 [/A1%A) MIED A X)] |

or

gk—1

@ - (M=) 7 UBIA) =00 (/“ NI " MYYRN' W),

Choose a constant ¢ such that the number 1 - c~a-2 is positive. Setting h = ¢/N in the last
inequality, we obtain

IT VAR AA=0(n-T) (JT IAIrPA)) * @((™)).

On estimates for the Jacobi transform in the space i/(lR"‘,Ja"(X)(f;t) 219

Then
IT 1/(A)%(A) = ((E)*)),

which completes the proof. O

Corollary 2.1. Leta >  >=j-,p = «+ B+ 1, (p(t) = tv,v > 0, and letf € W"x(Da").

Then
, KD A b ]
yWI/(A)IV"(A)J =0 (N~2 ) as N -"oo

where | < p <2 andqsuch that*+ 1 = 1.
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ON THE MULTIPLICATIVE ORDER OF ELEMENTS IN WIEDEMANN'S TOWERS OF
FINITE FIELDS

We consider recursive binary finite field extensions £,+j = E,(xi+]), i > —1, defined by
D. Wiedemann. The main object of the paper is to give some proper divisors of the Fermat numbers
N, that are not equal to the multiplicative order O (xj).

Key words and phrases: finite field, multiplicative order, Wiedemann's tower.
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Introduction

High order elements are often needed in several applications that use finite fields [8, 9].
Ideally we want to have a possibility to obtain a primitive element for any finite field. However,
if we have no the factorization of the order of finite field multiplicative group, it is not known
how to reach the goal. That is why one considers less ambitious question: to find an element
with provable high order. It is sufficient in this case to obtain a lower bound on the order.
The problem is considered both for general and for special finite fields. We use Fj to denote
finite field with q elements. Gao [5] gave an algorithm constructing high order elements for
many (conjecturally all) general extensions iy> of finite field Fq with lower bound on the order
exp(Q((log m)2/ loglog m)). Voloch [13] proposed a method which constructs an element of
order at least exp ((log m)2) in finite fields from elliptic curves.

For special finite fields, it is possible to construct elements which can be proved to have
much higher orders. Extensions connected with a notion of Gauss period are considered in
[1,11]. The lower bound on the order equals to exp(Q(4/m)). Extensions based on Kummer
polynomials are of the form Fq[x] /(xm—a) [2,3]. Itis shown in [3] how to construct high order
elements in such extensions with the condition g = 1(mod m). The lower bound exp (Q (m)) is
obtained in this case. The condition g = 1(mod m) for extensions based on Kummer polyno-
mials is removed in [12].

Another less ambitious, but supposedly more important question, is to find primitive ele-
ments for a class of special finite fields. A polynomial algorithm that finds a primitive element
in finite field of small characteristic is described in [6]. However, the algorithm relies on two
unproved assumptions and is not supported by any computational example. Our paper can
be considered as a step towards this direction. We give some restrictions and as a consequence
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a lower bound on multiplicative order of some elements in binary recursive extensions of fi-
nite fields defined by Wiedemann [14]. The paper concerns with the open question posed by
Wiedemann [10, problem 28]. Voloch [13] gave the first nontrivial estimate for the order of
elements in this construction, namely exp(220), where 4 is an absolute constant. However, the
constant is unknown. Our bound does not depend on any unknown constant.

More precisely, we consider the following finite fields defined by Wiedemann that are con-
structed recursively:

X\ —1, £ i = Er(X-i) = F2f
fori > —, Ei+l = E,(X-+1), where x/H satisfies the equation

xjtl + Xi+iXi+ 1= 0. ()
So, we obtain the following tower of characteristic two finite fields:
F2 C Eo = F2(x0) ¢ EI = EO(xi) C ...
For comparison, the following finite fields are defined by Conway [14]:
c-i = 1/L-i =rr(c-i) = ?2/
fori> —1, L+ = Lj(ci+1), where c!+i satisfies the equation

|
o1+ civl F 1 o —o
/=-1

In this case, the following tower of finite fields of characteristic two arises:
L_i = f2(c-i) = FR2C LO= Pr(co) C L1= LO(ci) ¢ ...

From a point of view of applications such construction is very attractive, since we can perform
operations with finite field elements recursively, and therefore effectively [7].

Note that the number of elements of the multiplicative group E* (i > 0), that is the set
of non-zero elements of the field E;, equals to 22'+1 —1. If to denote the Fermat numbers
Nj = 22 + 1 (; > 0), then the cardinality of E* (i > 0) is equal to 22+ - 1 = f]'=0Nj. For
example, |E*] = 22°- 1=3, \H] =22- 1=15=3:5 |g| =28- 1=255=3-5-17.

1 Preliminaries

We give below in Lemmas 1-9 auxiliary results for this paper.
Lemma 1 ([5]). Forj > 1 the following equality holds Nj = M[~ > t + 2.
As a consequence of Lemma 1, we have the following lemma.
Lemma 2. Numbers Nj (j > 0) are pair-wise coprime.
Lemma 3 ([14]). Fori > 0, the following equality holds: (x,)N = 1.

The multiplicative order of a field element X, is defined to be the smallest nonnegative
integer N, such that (x,)N = 1. According to Lagrange theorem for finite groups, the above
result implies that the order of x- divides N,. In the case where N; is prime, X, has order that
precisely equals to N,. The open guestion posed by Wiedemann [10, problem 28] is as follows:
does the multiplicative order O(x,) of the element x, equal to Nt In any case, the order of xr
divides N;j.
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Lemma 4. Letur = TV/=oxif°rr —0/[4 ___ The multiplicative order of element ur equals to
o(ur)=nLoOM -

Proof. Since the Fermat numbers are pair-wise coprime (see Lemma 2), the order of ur —
Mi-o xi is e product of the orders of x,, 0 < i < r. The number of elements of the multi-
plicative group E* (/ —0,1,...) is equal to LJ]=0Nj. As a corollary of Lemma 3 we have that
the group E* (i = 0,1,...) is an internal direct product of subgroups with Nj(j —O0,..., 1)
elements. The element x, belongs to the subgroup with the order Nr O

We say that an element of a finite field is primitive if its order is the same as the number
of nonzero field elements. If the order of x: is, in fact, N, for 0 < i < r, then ur = IN/=oxi
is a primitive element in Er, because 22+ —1 = T1)=0 Nj. So, the given before Wiedemann's
guestion can be reformulated as follows: is the element ur = I1;=0 x" primitive.

Lemma 5. Forj >2,adivisora > 1of the number Nj isof the form a —1m>+2 + \ where lis
apositive integer.

Proof. The result obtained by Euler and Lucas (see [4, Theorem 1.3.5]) states: forj > 2, a prime
divisor of the number Nj is of the form 1-2 + 1, where | is a positive integer. Clearly a
product of two numbers of the specified form is a number of the same form. Hence, the result
follows. O

Lemma 6. Let K be a finite field of characteristic two and x,y € K. If

y2 = yx + 1, ()]
then
yX = yxk~l + £ x2*"2 3

M
for anypositive integer k.

Proof. By induction on k. For k = 1 we obtain the equality (2).
Suppose the equality (2) holds for some positive integer k. Then
. ' 2
=(/)2= S Yyv**L2+£> -
i=1
Taking into account (2), we have

k4L
y2*4—1 _ yxz«l—ll+ | ﬁzx 2
I=1
that is the equality (3) is true for k + 1 as well. O

Lemma 7. The multiplicative order O(x,) = N, for0 < i < 11.

Proof For 0 < i < 4 Fermat numbers are prime [4]: Ng= 3, N\ = 5, N2 = 17, N3 = 257,
N4 = 65537. Therefore clearly for these numbers, as a consequence of Lemma 3, the order of
the element x, coincides with the correspondent Fermat number, that is O(X,) = N..

The rest of the proof uses computer calculations. We perform calculations of order of the
element X/ for 5 < i < 11. In this case Fermat numbers are completely factored into primes [5].

Using the mentioned factorizations, we calculate x, in the power Nj/q for any prime divisor
g of the number Nj. Really, if an element in the power N,/q is not equal to one, then the element
in the power of any divisor of N\/q is also not equal to one. As a result we obtain that for
5 < i< 11 the order of element X, is not less than Nj, namely precisely equals to N;-. O

Lemma 8. Fori > 0 the inverse element to the element x; equals to (xr)_1 = x, + X/-i-

Proof Based on the given in the introduction recursive equation (1), that defines the Wiede-
mann's tower, we have x,(X, + X,_i) = (x,)2 + x,X,_i = 1 Hence, the element x- is the inverse
to the element x,-+ X, . O

Lemma 9. The following equalities hold fori > 1

Xf = xx—+ 1, 4
xf = X, —Hx,-—2x, + 1), (5)
xf = Xf-i[(xf 2+ + Xi-zXi-i + 1] (6)

Proof The equality (4) follows directly from (1). Using (4) for x2 consequently two times, we
obtain
xf=xf - X=X(IXR+ X=X 1IX+ X, i+ X
Substituting now the value of x2 Afrom (4), leads to (5). Using (4) and (5), we have
xf= xf . -xf= Xf_L(XF_2XF + I)(Xf-IXf + 1) = Xf_i(Xf_2Xf_iX2 + Xf 2Xf + Xf-iX/ + 1)

= X f-iixj.jx, -, + XE_2Xf_i + Xf_2X-+ Xf_iXf+ 1).

Substituting now the value of x2_j from (4), gives (6). O

2 Main results

We give in this section in Theorems 1-3 and Corollary main results of this paper.

Theorem 1.The order O(x,) (i > 0) cannot be a divisor ofa number of the form 2k + 1, where
k is a positive integer and k < 2'.

Proof By induction oni. For 0 < i < 11 it is true according to Lemma 7. Let the assertion
holds for numbers from 12 to i —1.

Show by the way of contradiction that the assertion holds for i as welll. Assume that 0(x,-)
divides 2k + 1, where k < 2'. Then (x,)2 +1 = 1and Lemma 8 gives

(X,)2 = (X,)-1 = X+ X,--1. )
On the other hand, putting in 3) y = x,, X = X,_i, we have
(X)2 = xFxF—) 2 1+ E (xf-i)2-2/. ©)
/=1

Comparing coefficients near xrin (7) and (8), we obtain (x,-1)2* 1 = 1. Hence, 0(x,_1)
divides 2k —1. At the same time, by Lemma 3, 0(x,_i) is a divisor of 22" 1 + 1. Then 0(x,_i)
divides the sum of numbers 22 + 1and 2k —1, that is equal to S = 22 1 + 2k. Consider the
following three possible cases.



DIfk =2i AthenS = 22" 1+ 2k= 21" 1+1. In this case 0 (xr_i) equals to a power of two.
This contradicts to the fact that 0(x,-_1) must divide 120 + 1.

2) Ifk < 21 1, then S = 2k(22" I~k + 1). As 2k is coprime with 22 1 + 1, the order 0(XF_i)
divides 22° I~k + 1. Since k > 1, the inequality 2r 1 —k < 2r 1 holds, a contradiction with the
induction hypothesis.

3) IfA> 2r_1, then S = 22 1(2k~2" 1+ 1). As 22° lis coprime with 2k~2" 1+ 1, the order
0(x,_i) is a divisor of 2k~2" 1 + 1. Since k < 2I, the inequality k —2r_.1 < 2"1is true, a
contradiction with the induction hypothesis.

Therefore, we obtain a contradiction in all three possible cases, what shows that the asser-
tion also holds for i. O

Theorem 2. The order O(x,) (i > 0) cannot be a divisor of a number of the form s-2k + I,
where s = 3,5 and k is a non negative integer.

Proof. By the way of contradiction. If 0(x;) is a divisorof a number of theform s -2k + 1, then
(x/)s'2ctl = 1 and clearly

(xi)s'&k = (x,-)-1. 9
Denote t —2' —k. Then 22" = 2| &k.Powering left and right sideof the equation (9) to 2f and

taking into account (x,-)2 = (x/) ,we obtain

(xif = (v)m

Consider the case s = 3. According to Lemma 6

(X)2 = Xf(/—H)2* 1+ E (X -1)2,“2 (10)

Comparing coefficients near x, on the right side of (10) and (5), we have

(XI—1)2>2 = Xi-2-

Since x,_2 & 1and, by lemma 2, Fermat numbers are coprime, we have the trivial intersection
of cyclic subgroups (x.--1) M xf—2) = 1| a contradiction. As a consequence, 0(xr) (z > 0)
cannot be a divisor of a number of the form 3 ®k + 1, where Ais a non negative integer.

Consider now the case s = 5. Comparing coefficients near x- on the right side of (10) and
(6), we obtain

(o) 2= 3= (Xi-2)2 + I-

Since (xi-2)2+ 1 = Xi_2*i—3 /'we have (x,-2)2+ 1 € [F2(xf-2)]*- Note that (xF_2)2+ 1 &P
1, because (x/-2)2 ® 0. The fact: N,-_i is coprime with ar 2/Tr_3 (see lemma 2), leads to
(x,_i) AOfi2(x/-2)]* CDl, a contradiction. Therefore, 0 (xr) (r > O) cannot be a divisor of a
number of the form 5 -2k + 1, where k is a non negative integer. O

Theorem 3. The order of element x, equals to Ni for 0 < i < 11 and is at least7 -2,+2 + 1 for
i>12.

Proof. By Lemma 7 0(xr) = Nj holds for 0 < i < 11. Show now that 0(x,-) > 7 -2i+2 + 1 for
i > 12. If (x,-)" = 1, then, by the Lagrange theorem for finite groups, n- divides Nj. According
toLemma 3, n- = s®,+2 + 1, where s is a positive integer. By Theorem 1, s can not equal to 1,2
or 4, and by Theorem 2 s can not equal to 3, 5 or 6, that iss > 7. Hence, the result follows. O

Corollary. The order ofelement ur = Mi-o xiequals tolMN/=0 for 0 < r < 11 and is at least
MEoNjmUu (7 ®i+2 + 1) forr > 12.

Proof. According to Lemma 4, we have the equality O0(ur) = /=00 (xi)- Applying now Theo-
rem 3, we obtain given in the formulation of the corollary bounds on the order. O
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Po3rnapaoTbcs peKypCcUBHI ABIMAKOBI PO3LUIMPEHHSA CKiHYeHHUX noniB E!l+i = E,(x,+X), i > —1,
BM3HauveHi [. BigemaHoMm. OCHOBHa MeTa po6oTn — onucaTtu Aeski BNacHi 4ilbHUKN yncen depma
Nj, AKi He JOPIBHIOOTb MyNnbTUMNAIKaTUBHOMY nopsaaky O(X,).
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GEOMETRY OF HYPERSURFACES OF A QUARTER SYMMETRIC NON METRIC
CONNECTION IN A QUASI-SASAKIAN MANIFOLD

The purpose of the paper is to study the notion of CR-submanifold and the existence of some
structures on a hypersurface ofa quarter symmetric non metric connection in a quasi-Sasakian man-
ifold. We study the existence of a Kahler structure on M and the existence of a globally metric frame
/-structure in sence of Goldberg S.1., Yano K. [6]. We discuss the integrability of distributions on
M and geometry of their leaves. We have tries to relate this result with those before obtained by
Goldberg V., Rosea R. devoted to Sasakian manifold and conformal connections.
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Introduction

Let V be a linear connection in an m-dimensional differentiable manifold M. The torsion
tensor T and the curvature tensor R of VV are respectively given by:

T(X,Y) = VXY —VyX —[X, Y],
R(X,Y)Z = VXVYZ - VyVXZ- V]DNZ

The connection V is symmetric if the torsion tensor T vanishes, otherwise it is non-symmetric.
The connection V is metric if there is a Riemannian metric g in M such that Vg = 0, otherwise
it is non-metric. It is well known that a linear connection is symmetric and metric if and only
if it is the Levi-Civita connection. In [5] S. Golab introduced the idea of a quarter-symmetric
connection. A linear connection is said to be a quarter-symmetric connection if its torsion
tensor T is of the form
T(X,Y) = u(Y)<pX - u(X)<pY,

where uis a 1-form and @ is a tensor field of type (1,1). Some properties of quarter symmetric
connections are studied in [7]. In [8, 9] S. Rahman studied Transversal hypersurfaces of almost
hyperbolic contact manifolds with a quarter symmetric non metric connections respectively.

The concept of CR-submanifold of a Kahlerian manifold has been defined by A. Bejancu [3].
Later A. Bejancu, N. Papaghiue [4] introduced and studied the notion of semi-invariant sub-
manifold of a Sasakian manifold. These submanifolds are closely related to CR-submanifolds
in a Kahlerian manifold. However the existence of the structure vector field implies some
important changes.

@ Rahman Sh., 2015

The paper is organized as follows. In the first section we recall some results and formulae
for the later use. In the second section we prove the existence of a Kahler structure on M
and the existence of a globally metric frame /-structure in sence of S.I. Goldberg, S.I. Yano.
The third section is concerned with integrability of distributions on M and geometry of their
leaves. In section 4 the study of conformal connections with respect to the quarter symmetric
non metric connection in a quasi-Sasakian manifold is considered.

1 PRELIMINARIES

Let M be a real 2n + 1 dimensional differentiable manifold, endowed with an almost con-
tact metric structure (/, &, n,g). Then we have

(@f2=-1+n®? ()nE) =1 (Ano/ =0 (df(?) =0,
() n{X) = g(X.,?), (/) S(fX, fY) =g(X,Y)-n(X)n(Y)

for any vector field X, Y tangent to M, where 1 is the identity on the tangent bundle 'M of M.
Throughout the paper, all manifolds and maps are differentiable of class C°°. We denote by
F(M) the algebra of differentiable functions on M and by '(E) the F(M) module of sections
of a vector bundle E over M.

The Niyembuis tensor field, denoted by Nf, with respect to the tensor field /, is given by

Nf(x,Y) = {fx.fY] +/2[x,y] -fifx.Y] +f[x,fY]

for all X, Y € (TM) and the fundamental 2-form ® is given by ®(X,Y) = g{X,fY) for
all X,Y € I'(TM). The curvature tensor field of M, denoted by R with respect to the Levi-
Civita connection V, is defined by R(X,Y)Z = VxVyZ - VyVxZ - V[XY]Zforall X,Y,Z €
r(TM).

Definition 1. (a) An almost contact metric manifold M (7, , n,9) is called normal if
Nf (X, Y) + 2an{X,Y){ = 0 forall X, Yel(TM),

or equivalently ([1]) (VIxf)Y = Z(VX/)Y - M((Vx?,Y) forallX,Ye T(TM).
(b) The normal almost contact metric manifold M is called cosympleticif d® —adn = 0.

Let M be an almost contact metric manifold M. According to [1] we say that M is a quasi-
Sasakian manifold if and only if { is a Killing vector field and

(VXY = g("VIXC'Y)E-n(Y)'VIxe forall X,Y €7 (TM). 2
Next we define a tensor field F of type (1,1) by FX = —Xx{ forall X €T (TM).
Lemma 1. Let M be a quasi-Sasakian manifold. Then forall X,Y € '(TM) we have

»)(Vj/)X =0, ((©)f oF —Fofr (c)g(FX,Y)+g(X,FY)=0,
(<i)F?=0, (e)noF=0, (f)(VxF)Y=Rti,X)Y.

The tensor field 7/ defined on M is an /-structure in sense of Yano thatis/3+ /7 = 0.

Definition 2. The quasi-Sasakian manifold M is said to be ofrank 2p + 1iff

nNA@n)pe 0 and (an)p+l = 0.
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On other hand, a quarter symmetric non metric connection V on M is defined by

VXY = VXY + n(Y)oX. @)

Using (4) in (2), we have
(Vx/)Y =gtffxl, Y)f - 7(Y)V/X? +n(Y)X - n(X)n(Y)E, %)
Vx?=-FX+/X. (6)

Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian
manifold M and denote by N the unit vector field normal to M. Denote by the same symbol g
the induced tensor metric on M, by V the induced Levi-Civita connection on M and by TM1
the normal vector bundle to M. The Gauss and Weingarten formulas of hypersurfaces of a
guarter symmetric non metric connections are

(7)) VXY = VXY + B(X,Y)N, (b) VXN = —AX, 7
where A is the shape operator with respect to the section N. It is known that for all X,Y €
r(TM)

B(X,Y) =g(AX,Y). (8)

Because the position of the structure vector field with respect to M is very important we
prove the following result.

Theorem 1. Let M be a hypersurface ofa quarter symmetric non metric connection in a quasi-
Sasakian manifold M. If the structure vector field ¢ is normal to M then M is cosympletic
manifold and M is totally geodesic immersed in M.

Proof. Because M is quasi-Sasakian manifold, then it is normal and d® — 0 ([2]). By direct
calculation using (7) (b), we infer for all X, Y € '(TM)

<*{(XY) = J{(?X7)00 - (VriHX)} = i{g(VxS,Y) -itO"E&,x)}, (9)
2an(X,Y) = g(AY,X) -giAX,Y) = 0.
From (7) (b) and (9) we deduce forall X, Y € '(TM)
0= dn{X,Y) = l2<(V><7)(Y) - (Vy,)(X)}

: (10)
= Ag(VXC,Y) -ir(Vy?,X)} = g(Y,Vx?) = —g(AX,Y) = 0,

which proves that M is totally geodesic. From (10) we obtain VxX£ = 0 for all X € (TM). By
using (6), (3) (b) and (1) (d) from the above relation we state for all X € '(TM)

~/(VIXE)+ /X = VXE, (11)

because /X €T (TM) forall X € '(TM). Using (11) and the fact that  is a not Killing vector
field, we deduce dn ¢ 0.

Next we consider only the hypersurface which are tangent to {. Denote by U —fN and
from (1) (f), we deduce g(U,U) = 1. Moreover, it is easy to see that U € I'(TM). Denote
by D1 = Span(U) the 1-dimensional distribution generated by U, and by D the orthogonal
complement of D L® () in TM. It is easy to see that

/D=D, DtCTM1, TM=DO0 DI 0 (), (12)

where © denote the orthogonal direct sum. According with [1] from (12) we deduce that M is
a CR-submanifold of M. O

Definition 3. A CR-submanifold M of a quasi-Sasakian manifold M is called CR-product if
both distributions D0 ({) and D1-are integrable and their leaves are totallygeodesic subman-
ifold of M.

Denote by P the projection morphism of TM to D and using the decomposion in (10) we
deduce for all X € '(F'M) that

X = PX + a(X)U + n{X)¢, fX =fPX + a(X)fu + n™X)¢,
therefore/X = fP X —a(X)fU. Since
U=fN, fU=fN = —N+ n(N)Z ——N +g(N, &) = -N,

where a is a 1-form on M defined by a(X) = g(X, U), X € (TM). From (12) using (1) (a) we
infer for all X € N'(TM)

fX = tX-a(X)N, (13)
where tis a tensor field defined by tX = fPX, X € (TM). It is easy to see that

(@) i =10, (b)tU=0. (14)

2 Induced structures on a hypersurface of a quarter symmetric non metric

CONNECTION IN A QUASI-SASAKIAN MANIFOLD

The purpose of this section is to study the existence of some induced structure on a hyper-
surface of a quarter symmetric non metric connection in a quasi-Sasakian manifold. Let M be
a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian manifold M.
From (1) (a), (13) and (14) we obtain t3+ t = 0, that is the tensor field t defines an /-structure
on M in sense of Yano [10]. Moreover, from (1) (a), (13), (14) we infer for all X € '(TM)

2X = -X + a(X)u + nX)Z. (15)

Lemma 2. On a hypersurface of a quarter symmetric non metric connection M in a quasi-
Sasakian manifold M the tensor field t satisfies forall X, Y € [(TM)

g X 1Y) = g(X.Y) - n(XMY) - a(X)a(Y), (b)g(tx, Y)+ g(X, 1Y) = 0. (16)
Proof From (1) (f), and (13) we deduce for all X, Y € [(TM)

g(X,Y) - n(X)n(Y)

g(fX,fY) = g(tX - a(X)N, IY - a(Y)N)
gitX, 1Y) - a(Y)g(l1X, N) - a(X)g(N, 1Y)
a(X)a(Y)g(N, N) = g(IX, IY) + a(X)a(Y),
g(tx, 1Y) = g(X,Y) - n(X)n(Y) - a(X)a(y),
g(tx, Y) + g(X, 1Y) = g(/X + a(X)N,Y) + g(X,fY + a(Y)N)
= g(fX,Y)+«X)g(N,Y) +g(X,/Y)+a(Y)g(X,N)
=g(/X,Y)+g(X,fY)= 0.

+



Lemma 3. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then we have

(@ FU = /AZ,(b) FN = Ag, (c) [L,Q = 0. (17)
Proof. Wetake X = UandY = ¢in (2)f(Yul) = - VNE - U. Then using (1) (a), (6), (7) (b),
we deduce the assertion (a). The assertion (b) follows from (1) (a), (3) (b) and (7) (b) we derive

V?2U- (% ON +/vEN=-/AE = -FU = v ug(

U =VuE- VAli=vul- vul=0,
which prove assertion (c). O

By using the decomposition TM —TM® TM1, we deduce
FX —aX —n(AX)N forall Xel(TM),

where a is a tensor field of type (1, 1) on M, since g(FX,N) = —g(X,FN) — —g(X,Ak) =
—(AX) forall X € '(TM). By using (5), (6), (7), (13) and (15) we obtain following theorem.

Theorem 2. Let M be a hypersurface ofa quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then the covariant derivative ofa tensors t, o, n and a are given by

@) (Vxt)Y = g(FX//IYK-g(X,YK-a(Y)AX+B(X,Y)U+V(Y)[octX+X-V(AX)U}/
(b) (Vxa)Y = B(X,tY) + n(Y)n(MX),
((V x7)Y = s(Y,VxE),
(d) (Vxa)Y = R(£,X)Y + B(X,Y)AE —n(AY)AX forall X,Y € T(TM)
respectively, where R is the curvature tensor field ofM.
From (5), (6), (14) and (18) (a) we get the following.

Proposition 1. On ahypersurface ofa quarter symmetric non metric connection M in a quasi-
Sasakian manifold M, we have for all X € [(TM)

(@) VXU = -tAX + n(AiX)Z, (b) B(X, U) = a(AX). (19)
Theorem 3. Let M be a hypersurface ofa quarter symmetric non metric connection in a quasi-

Sasakian manifold M. The tensor field tis aparallel with respect to the Levi Civita connection
V on M ifffor all X € I'(TM)

(@) AX = n(AX)C - a(X)Z+ a(AX)U, (b) FX —/X —n(AX)N + a(X)N. (20)
Proof. Suppose that the tensor field t is parallel with respect to V, that is Vi = 0. By using (2)
(a), we deduce for all X,Y €T(TM)
V(Y)[atX + X - n(AX)U) - a(Y)AX + g(FX,/Y)E + B(X,Y)U - g(X,Y)& = 0. (21)
Take Y = U in (21) and using (7) (b), (8), (19) (b) we infer
n(oX+ X - V(AX)U\ - a(U)AX + g(FX,/U)C - g(X, 11) + B(X, U)U = 0,
V(U) =0, a(U) =1 g(X,N)=0,
—AX + g(FX,Zv)& - g(X, 1)+ a(AX)U = 0,
AX = g(FX, —N)C - a(X)C + a(AX)U
g(X, FNtf - a(X)& + a(AX)U = g(X, AT - a(X)C + a{AX)U,
N(AX)E - a(X)L + a(AX)U

AX

and the assertion (20) (a) is proved. NextletY = /Z, Z € T(D) in (21) and using (1) (f), (3) (b),
(17), (20) (a), we deduce for all X € T(TM)

g(X,FZ) —0=" FX = /X —n(AX)N + a(X)N.

The proof is complete. O

Proposition 2. Let M be a hypersurface of a quarter symmetric non metric connection in a
quasi-Sasakian manifold M. Then we have the assertions for all X, Y € ['(TM)

(@) (Vxf)Y =0~ VXU =0, (b) (VX7)Y =0 VXE=O.
Proof. Let X,Y € '(TM). Using (8), (16) (b), (18) (b) and (19) (a) we obtain

g(VxU,Y) = g(—AX + n(MX){, Y) = g(-tAX,Y) + n(AiX)§(C, V)
g(AX,tY) + n(ALX)V(Y) = (VxFI)Y,

which proves assertion (a). The assertion (b) is consequence of the fact that  is not a killing
vector field. O

According to Theorem 2 in [6], the tensor field / = t+ n® U —a & defines an almost
complex structure on M. Moreover, from Proposition 2 we deduce the following assertion.

Theorem 4. Let M be a hypersurface ofa quarter symmetric non metric connection in a quasi-
Sasakian manifold M. If the tensor fields t, a, n are parallel with respect to the connection V,
then f defines a Kahler structure on M.

3 Integrability of distributions on a hypersurface of a quarter symmetric non

METRIC CONNECTION IN A QUASI-SASAKIAN MANIFOLD M

In this section we establish conditions for the integrability of all distributions on a hypersur-
face of a quarter symmetric non metric connection M in a quasi-Sasakian manifold M. From
Lemma 3 we obtain.

Corollary 1. On a hypersurface of a quarter symmetric non metric connection M of a quasi-
Sasakian manifold M there exists a 2-dimensional foliation determined by the integral distri-
bution D1-¢ (Q).

Theorem 5. Let M be a hypersurface ofa quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then we have the following.

(@) Aleafof D1 (B (Q) is totally geodesic submanifold of M ifand only if

(1) AU = a(AU)U + n(AINZ —Z and (2) FN = a(FN)U.

(b) Aleafof D1 0 (£) is totallygeodesic submanifold of M ifand onlyifforall X € T(D)

(1) AU=0 and (2) a(FX) = a(FN) -1 =0.



Proof, (a) Let M* be a leaf of integrable distribution D1-¢ (¢) and h* be the second fundamen-
tal form of the immersion M* —M. By using (1) (f) and (7) (b) we getfor all X € I'(TM)

g(h’ (U, U), X) = g(VuU, X) = -g(N, (VW)X - g(VuN,fX)
0—g(-AU,/X) = g(AU,fX) = g(AU,fX)

and forall X €T (TM)
g(h'(Un),X) = i(vu&,X) = g(-FU + U,X) = g(FN,fX) +a(X), (23)

because g{FU, N) = 0and f{ = 0 the assertion (a) follows from (22) and (23).
(b) Let h\ be the second fundamental form of the immersion M* —M. It is easy to see that

hi(X,Y) = h*{X,Y) + B(X,Y)N forall X,Y e T(DO0 (£)).(24)

From (6) and (8) we deduce

(fti (i1, IT), N) = g(VuU, N) = a(AU), (25)
g(h (U, &),N) = g(VU£E,N) = e(FN) - 1 (26)
The assertion (b) follows from (23)-(26). O

Theorem 6. Let M be ahypersurface ofa quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then

(@) the distribution D © () is integrable ifffor all X, Y € I'(D)
g(AfX+fAX,Y) =0, 27)

(b) the distribution D is integrable iff (27) holds and for allX € T(D)
FX = T(AEX)il - n(AX)N, (equivalent with FD 1 D),

(c) fhedistribution D © D1 is integrable iffPX —O0 for all X € F(D).
Proof. Let X, Y € I'(D). Since V is a torsion free and  is a Killing vector field, we infer
g([X,e],U) =g(Vxt,U)-g(VSX,U) =g(Vx?,U)+g(VuS,X) =0. (28)
Using (1) (@), (7) (a) we deduce for all X, Y € T(D)

g([X, Y], U) = g(VXY - VyX,U) = g(VXY - VyXJIN)
= g(VYFX -V xfY,N) = -g(AfX + fAX,Y).

Next by using (4), (5) (d) and the fact that V is a metric connection we get for all X,Y € T(D)
g([X, YL.E) = £(VXY,0 - s(VyX,{)= 29(FX - /7X,Y) = 29(FX, Y) - 29(fX, Y). ~ (30)

The assertion (a) follows from (28), (29) and assertion (b) follows from (28)-(30). Using (6) and
(3) we obtain forall X € T(D)

S([X,U],n =g (VxU,5) -g(V uX,l) = 2g(FX,U) - 2g(fX,U). (31)
Taking into account that for all X € T(D)
g(FX,N) = g(FfX,fN) = g(FfX,U), (32)

the assertion (c) follows from (30) and (31). O

Theorem 7. Let M be a hypersurface ofa quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then we have

(@) the distribution D is integrable and its leaves are totally geodesic immersed in M if and
onlyifforall X €(D)

FDJ D and AX = a(AX)U - n(AX)Z, (33)

(b) the distribution D ¢ () is integrable and its leaves are totally geodesic immersed in if
and only iffor X € F(D) takes place AX —a(AX)U and FU = 0,

(c) the distribution D © D! is integrable and its leaves are totally geodesic immersed in M
ifand only iffor X € T(D) takes place FX = 0.

Proof. Let M\ be a leaf of integrable distribution D and h\ the second fundamental form of
immersion—M. Then by direct calculation we infer

g{h\ (X, Y), U) = g(Vxy, U) = —g(Y, Vxtf) = -g(AX, tY) (34)
and for all X, Y €T (O)
g{h\ (X,¥),0 =g(Vxy,0 =g(FX,Y) - g(fX,Y). (35)

Now suppose M\ is a totally submanifold of M. Then (33) follows from (34) and (35). Con-
versely suppose that (33) is true. Then using the assertion (b) in Theorem 6 it is easy to see that
the distribution D is integrable. Next the proof follows by using (34) and (35). Next, suppose
that the distribution D © (Q) is integrable and its leaves are totally geodesic submanifolds of
M. Let Mi be a leaf of D © ({) and hi the second fundamental form of immersion M\ -> M.
By direct calculations, using (6), (7) (b), (16) (b) and (19) (c), we deduce that for all X, Y € T(D)

g(h (X,¥),U) = g(VxY, U) = —g(AX, tY), (36)
and for all X € T(D)
g(h (X, &), U) =g(vxe& V) =g(-FU +fu, X) = g{FU, X). 37)

Then the assertion (b) follows from (32), (36), (37) and the assertion (a) of Theorem 6. Next let
M\ be a leaf of the integrable distribution D © D1 and h\ is the second fundamental form of
the immersion M\ —v M. By direct calculation for all X € T(D), Y € T(D © D1) we get

g(h\ (X,Y),&) = g(FX,Y) - g(fX,Y). (38)
The assertion (c) follows from (3) (c), (32) and (38). O

4 contactconformalconnection on a hypersurface of a quarter symmetric

NON METRIC CONNECTION IN A QUASI-SASAKIAN MANIFOLD M

Let the conformal change of the metric tensor g which induces a new metric tensor, given
by £(X,Y) = e2pg(X, ¥) with regard to this metric, take an affine connection, which satisfies

Vxj(Y,Z) = Vx{elpg(Y,2)} = Bpp(X)n(Y)n(2), (39)



where p is a scalar point function. The torsion tensor of the connection V satisfies
T(X,Y) = -2g(fX,Y)U = S(X,Y) - S(Y,X), (40)

where U is a vector field. Let
AXY —V XY + S(X,Y), (41)
where S is a tensor of type (1,2). Using (39), (40), (41), we have

VXY = VXY + p(X)(Y - n(Y)Z] + p(Y){X - n(X))
S g(EXLEY)P + u(X)EY + u(Y)fX - g(fX,Y)U,
where g(P,X) = p(X),g(QX,P) = p(IX) = —q(X), 9(Q,X) = q(X),g(U,X) = u(X).

(VX)(Y) = (VXI)(Y) + {X - n(X)TpUY) - p(Y)EX + gifx, Y)p + g(FX,fY)fP
+ u(FY)FX + u(Y){X - n(X)&] - g(fX,fY)U+g(/X,Y)fU = 0.

Using (5), the relation becomes
S(VIX?2,Y)? - n(Y)v,x&+ n(Y)X - n(X)n(Y)C - p(Y)fX

+ {X - n(X)Qp(/Y) +g(FX,Y)p+g(FX,fY)FP + u(fY)fx
+ u(Y){X - n(X)-g(IX,fY)U+g(IX,Y)fU = 0.

Contracting with respect to X,

2mn{Y) + 2mpY) - 2p(fY) + 2mu(Y) - 2u(Y) + 2n(1D)n(Y) = 0,
2(m —Dp(fY) + 2(m - Du(Y) + 2n{Y){tn + ?/(ii)} = 0.

Ifwe putn(i) = —1 = u(£), then u(Y) = q(Y) —n(Y)- Thus (42) takes the form

VXY = VXY + {Y - n(Y){}p(X) + {X - n(X)&p(Y) ~g(fX,fY)P
+{a(X) - nXOMY + {a(Y) - n{Y)}/X - g(fX, )(Q - 0.

Then YxZ —0 = VXE+ {X - n(X)}p(Q) - fX. Using (6) in this equation, we have

-EX +fX + VXE+ {X - n(X)}p(Q) - /X =0,
which implies that FX = {X —n(X){}p(Q).

Proposition 3. On a hypersurface ofa quarter symmetric non metric connection M in a quasi-
Sasakian manifold M the affine connection V which satisfies (40), is given by (43) with the
conditions n(¢) = -1 = >7(11), FX = {X - n(X)}p(0).

Acknowledgement. The author thanks the referees for valuable suggestions, which have im-
proved the present paper.
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PaxmaH LL. FeomeTpia rinepnoBepxoHb YeTBEPTUHHO CUMETPUUYHOIO HEMeTPUYHOTO 3B'AXKY B kBasi Ca-
caksiHoBoMy MHorosugi // KapnaTtcbki matem. ny6a. — 2015. — T.7, Ne2. — C. 226-235.

MeToto Liel cTaTTi € BUBYEHHSA MOHATTA CR-MiAMHOroBMAiIB Ta iCHYBaHHA fesaKUX CTPYKTYpP Ha
rineproBepxHi YeTBEPTUHHO CUMETPUYHOIO HEMETPUYHOIO 3B'A3KY B KBa3i CacakKssHOBOMY MHOTO-
Buai. Mu gocnig>yemo icHyBaHHSA cTPYKTypu Kaxnepa Ha M Ta icHyBaHHSA rno6asibHO METPUYHOT
KOHCTPYKLIT/-CTPYKTYpWn y ceHci Nlonbat6epra C.l1., AHo K. [6]. O6roBoptoeTbCsA iHTErPOBaHICTb PO3-
noginies Ha M ireomeTpisi IXHiX NCTKIB. ONuncaHo cNpo6u NoB'A3aTu Leit pe3ynbTaT 3 0OTPUMaHUMU
paHiwe pesynbTatamu Nonbabepra B., Pocka P., Aaki npucssayeHi mMHorosmay CacaksiHa Ta KOHopMm-
HNM 3B'A3KaM.

Kntouosi cnosa i thpasu: CR-nigmHorosuj, keasi CacakssiHOBWUI MHOTOBU [, YeTBEPTUHHO CUMETPU-
YHW HEMETPUYHUI 3B'I30K, YMOBU iHTErPOBaHOCTI PO3MOAiniB.
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A STUDY ON INTEGER ADDITIVE SET-VALUATIONS OF SIGNED GRAPHS

Let N Odenote the set of all non-negative integers and P (N 0) be its power set. An integer addi-
tive set-labeling (IASL) of a graph G is an injective set-valued function/ : V(G) —=P(No) \ {0}
such that the induced function /+ : E(G) —aP(No) \ {0} is defined by f +(uv) —f(u) + f(v),
where f(u) + f{v) is the sumset of f(u) and f(v). A graph which has an IASL is usually called
an IASL-graph. An IASL / of a graph G is said to be an integer additive set-indexer (IASI) of G if
the associated function /+ is also injective. In this paper, we define the notion of integer additive
set-labeling of signed graphs and discuss certain properties of signed graphs which admits certain
types of integer additive set-labelings.

Key words and phrases: signed graphs, balanced signed graphs, clustering of signed graphs, IASL-
signed graphs, strong IASL-signed graphs, weak IASL-signed graphs, isoarithmetic IASL-signed

graphs.
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1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [3,5,16] and
for the topics in signed graphs we refer to [17, 18]. Unless mentioned otherwise, all graphs
considered here are simple, finite and have no isolated vertices.

1.1 An overview of IASL-graphs

The sum set (see [7]) of two sets A and B, denoted by A + B, isdefinedas A+ B= {a + b:
a € A, b € B}. Let No be the set of all non-negative integers and let X be a non-empty subset
of No- Using the concepts of sumsets, we have the following notions as defined in [4, 8].

An integer additive set-labeling (shortly IASL) is an injective function/ : V(G) —=V(X) \{0}
such that the induced function 7+ : E(G) —aV(X) \{0} is defined by

f+(uv) =f(u) +f(v)

for all u,v € E(G). A graph G which is endowed with an IASL is called an integer additive
set-labeled graph (IASL-graph).

An integer additive set-indexer (IASI) is an injective function /7 : V(G) —V(X) \{0} such
that the induced function 7+ : E(G) -¥ V(X) \{0} is also injective. A graph G which is
endowed with an IASI is called an integer additive set-indexed graph (IASI-graph).

(C) Sudev N.K., Germina K.A., 2015

An IASL (or 1ASI) is said to be k-uniform if Y+ (e)\ =k foralle € £(G). That s, a connected
graph G is said to have a £uniform IASL (or 1ASI) if all of its edges have the same set-indexing
number k. The cardinality of the set-label of an element (vertex or edge) of a graph G is called
the set-indexing number of that element. If the set-labels of all vertices of G have the same
cardinality, then the vertex set V(G) is said to be uniformly set-indexed. An element is said to be
mono-indexed if its set-indexing number is 1.

A weak integer additive set-indexer of a graph Gis an IASIf : V(G) -I- V(X) \{0} such that

\f+ (uv)\ = max(]Z(u)], \f(v)\)
for all u,v € V(G) and a strong integer additive set- indexer (SIASI) of G is an IASI such that
\f+ (UV)\ = \f(u)\\f(v)\

forall u,v € V(G).
The following result is a necessary and sufficient condition for a graph to be a weak IASL-
graph.

Lemma 1 ([10]). An IASIf ofa given graph G is a weak IASIof G if and only if at least one
end vertex of every edge ofG is mono-indexed, with respect tof.

Theorem 1 ([8]). Agraph G admits a weakly uniform IASL ifand only if G is bipartite.

An integer additive set-indexerf : V(G) -> V (X)\{0} ofagraph G, satisfying the condi-
tion VV+ (uv) I = \f(u) + f{v) I = KF(u) 1f(v) I for all edges uv of G, is said to be a strong IASI of
G. A graph which has a strong IASI is called a strong IASI-graph.

Theorem 2 ([9]). A graph G admits a strong IASI, say f, ifand only if for any two adjacent
vertices in G, the sets defined byDf(w) = {Ja- b\:a,b €f(u)} and ={\c—d\:cd€
f(v)} are disjoint.

Theorem 3 ([9]). A connected graph G admits a strongly k-uniform IASL if and only if either
G is bipartite or k is aperfect square.

An IASL 7/ of a given graph G is called an arithmetic IASL of G if the elements of the set-
labels of vertices and edges of G are in arithmetic progressions. If all these arithmetic progres-
sions have the same common difference d, then such an arithmetic IASL is called isoarithmetic
IASL of G.

Theorem 4 ([11]). Iff : V(G) -* V(X) isan isoarithmetic IASL defined on agraph G, then the
cardinality of the set-label ofany edge uv in Gis |Z(u) [+ \f(v) \—L1

1.2 Preliminaries on Signed Graphs

Note that a half edge of a graph G is an edge having only one end vertex and a loose edge
of G is an edge having no end vertices.

A signed graph (see [17,18]), denoted by E(G, 0), isagraph G(V,E) together with a function
0 \E(G) -> {+, -} thatassigns a sign, either + or -, to each ordinary edge in G. The function
o is called the signature or sign function of =, which is defined on all edges except half edges
and is required to be positive on free loops.
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An edge e of a signed graph X is said to be a positive edge if cr(e) = + and an edge cr(e) of
a signed graph X is said to be a negative edge if cr(e) = — The set E+ denotes the set of all
positive edges in Z and the set E~ denotes the set of negative edges in ~. A simple cycle (or
path) of a signed graph X is said to be balanced (see [2, 6]) if the product of signs of its edges is
+. A signed graph is said to be a balanced signed graph if it contains no half edges and all of its
simple cycles are balanced.

Note that a negative signed graph is balanced if and only if it is bipartite.

Balance or imbalance is the main property of a signed graph. The following theorem, well
known as Harary"s Balance Theorem, establishes a criteria for balance in a signed graph.

Theorem 5 ([6]). The following statements about a signed graph are equivalent.
i) A signed graph X is balanced.
i) £ has no halfedges and there is a partition (V\, Vj) ofV(JL) such that E~ = E(V\, \2).
Hi) Z has no halfedges and any two paths with the same end points have the same sign.

A signed graph X is said to be clusterable or partitionable (see [17,18]) if its vertex set can be
partitioned into subsets, called clusters, so that every positive edge joins the vertices within the
same cluster and every negative edge joins the vertices in the different clusters. If v(Z) can be
partitioned in to Asubsets with the above mentioned conditions, then the signed graph X is
said to be k-clusterable. In this paper, we discuss only the 2-clusterability of signed graphs.

It can be noted that 2-clusterability always implies balance in a signed graph Z. The con-
verse need not be true. If all edges in X are positive edges, then Z is balanced but not 2-
clusterable.

In this paper, we extend the studies on different types of integer additive set-labeling of
graphs to classes of signed graphs and hence study the properties and characteristics of such
signed graphs.

2 IASL-SIGNED GRAPHS

Motivated from the studies on set-valuations of signed graphs in [1], and the studies on
integer additive set-labeled graphs in [4, 8, 9, 11], we define the notion of an integer additive
set-labeling of signed graph as follows.

Definition 1. Let X C No and let Z be a signed graph, with corresponding underlying graph
G and the signature cr. An injective functionf : V(L) —aV(X) \{0} is said to be an integer
additive set-labeling (IASL) o/Z iff is an integer additive set-labeling of the underlying graph
G and the signature of X is defined bya{uv)) = (—)IZ(*)+/(°)L.

A signed graph which is endowed with an integer additive set-labeling is called an integer
additive set-labeled signed graph (IASL-signed graph) and is denoted byLf.

Definition 2. An integer additive set-labeling f of a signed graph X is said to be an integer
additive set-indexer o/Z iff is an integer additive set-indexer of the underlying graph G.

Definition 3. An IASL f of a signed graph X is called a weak IASL or a strong IASL or an
arithmetic IASL o/%, in accordance with the IASLf of the underlying graph G is a weak IASL
or astrong IASL or an arithmetic IASL of the corresponding underlying graph G.

The structural properties and characteristics of different types of IASL-signed graphs are
interesting. In the following section, we study the properties of strong IASL-signed graphs.

2.1 Strong IASL-signed graphs

As stated earlier, balance is the fundamental characteristic of a signed graph and hence
let us investigate the conditions required for a strong IASL-signed graph to have the balance
property. The following result provides a necessary and sufficient condition for the existence
of a balanced signed graph corresponding to a strongly uniform IASL-graph.

Theorem 6. A strongly k-uniform IASL-signed graph X is balanced if and only if the underly-
inggraph Gis a bipartite graph or \fkis an even integer.

Proof. Assume that the strongly £uniform IASL-signed graph X is balanced. Then, for any
cycle Cr, cr(Cr) must be positive. Let u, and 12 be two positive integers greater than 1 such that
I\ = k. Label the vertices of Cr alternatively by «j-element subsets and ~-element subsets
of the ground set X. Here we have the following cases.

Case 1. Letw, @ nj. We claim that this labeling is possible only when Cris even. If Cr is an
odd cycle, then by labeling the vertices of Cr as mentioned above, there will be two adjacent
vertices, say uand v both having ni-element set-labels or «2-element set-labels and the edge uv
has the set-indexing number n\ (or n\)), which is a contradiction to the fact that G is strongly
£Luniform IASL-graph. Therefore, G is bipartite.

Case 2. Let Crbe an odd cycle in G. Then, we claim that the above mentioned labeling is
possible only when n\ = nz- If Cris an odd cycle, as mentioned in Case-1, there exists an edge
in Cr with set-indexing number n\ (or n]). Since G admits a strongly ~-uniform IASL, we have
N\ = k = N'R. This is true only if N\ = «2 = y/k. That is, k is a perfect square. Therefore,
every vertex of Cr has the set-indexing number y/k and every edge of Cr has the set-indexing
number k. Since X is balanced, we have cr(Cr) = +, which is possible when k and hence y/k
are even integers.

Conversely, assume that the underlying graph G of strongly £uniform IASL-signed graph
> is a bipartite graph or y/k is an even integer. Then, consider the following cases.

Case 1. Assume that the underlying graph G is a bipartite graph. Then, G has no odd
cycles. Let Crbe an arbitrary cycle in G, where r is an even integer. Consider w,M2 € No such
that TN'2 = k. Now, label the vertices of G alternatively by w -element subsets and «2 element
subsets of the ground set X such that the labeling becomes a strongly fc-uniform IASL of G.
Here, we have the following subcases.

Subcase 1.1. If both w, and «2 are odd integers, then k is odd and hence every edges of the
cycle Crin Z has the negative sign. Since, Cr has even number of edges, we have cr(Cr) = +.

Subcase 1.2. If one or both of N\ and I'? is even, then k is even and every edge of Cr has the
positive sign. Therefore, c(Cr) —+.

Case 2. Assume that G is a non-bipartite graph. By hypothesis, y/k is an even integer and
hence k is also an even integer. Since G is not bipartite, it contains odd cycles. Let Cr be an
arbitrary odd cycle in G. Since G admits a strongly £uniform IASL, every edge of Cr must
be labeled by the subsets of X having cardinality y/k (see [9]). Therefore, every edge of G has
positive sign and hence cr(Cr) —+.

In all above cases, we can see that strongly A>uniform IASL-signed graph Z is balanced. O



What are the conditions required for a strongly uniform IASL-signed graph to be cluster-
able? The following result provides a solution to this problem.

Proposition 1. A strongly k-uniform IASL-signed graph X is clusterable if and only if the un-
derlyinggraph G is bipartite and k is an odd integer.

Proof. Let X is clusterable. Let (Ui, U2) be a partition of V(%) with the required properties of
a clustering of Z. Clearly, k must be odd. For, if k is even, all edges of Z will be positive edges
and hence all vertices of ~ belong to either U\ or to U2 making other empty, contradicting
the fact that X is clusterable. As k is odd, every edge of X is a negative edge and hence for
any two adjacent vertices in £ must belong to different partitions. Choose vertices which are
pairwise non-adjacent in X to form a subset lii of V(X) and let U2 = V \ U\ Clearly, U2 is also
a subset of V in which vertices are pairwise disjoint. Therefore, (iii, U2) is a bipartition of the
underlying graph G. Hence G is bipartite.

Conversely, assume that the underlying graph G of a strongly fc-uniform IASL-signed graph
> is a bipartite graph with bipartition (Vi, V2) and k is an odd integer. Therefore, every edge
of X is a negative edge with one end in Vi and other end in \2- Then, (Vi, \2) satisfies the
properties of a clustering for ~. Hence, % is clusterable. O

If the underlying graph G of a strong IASL-signed graph % is bipartite, then X is balanced if
and only if the number of negative edges in every cycle of G in X is even. This is possible only
when the number of distinct pairs of adjacent vertices, havingodd parity set-labels, in every
cycle of X is even. Therefore, we have the following assertion.

Proposition 2. Let Z be a strong IASL-signed graph with the underlying graph G bipartite.
Then, X is clusterable if and only if the number of distinct pairs of adjacent vertices having
odd parity set-labels is even.

The proof of the above theorem is very obvious. The following result describes the condi-
tions required for the clusterability of (non-uniform) strong IASL-signed graphs whose under-
lying graph G is a bipartite graph.

Proposition 3. The strong IASL-signed graph, whose underlying graph G is a bipartite graph,
is clusterable if and only if there exist at least two adjacent vertices in "Lf with odd parity
set-labels.

Proof. Let Z be a strong IASL-signed graph whose underlying graph G is a bipartite graph.
Then, the same IASL of X is a strong IASL of G also. Since G is bipartite, every cycle in G is an
even cycle. Let Cr : O\W2v3... viA be acycle in G.

First assume that Z is clusterable. Then, there exists a partition (U\, U2) of non-empty
subsets of V(Z) such that the edges connecting vertices in the same partition have positive
sign and the edges connecting vertices in the different partitions have the negative sign. Note
that an edge uv of G has a negative sign only when both u and v have odd parity set-labels.
Since G is a connected graph and both sets iii and U2 are non-empty, there must be at least
one edge, say e = uv, in G with one end vertex in Uj and the other end vertex in U2 such that
both u and v have odd parity set-labels.

Conversely, assume that at least two adjacent vertices of G have odd parity set-labels. If u
and v be two vertices of G having odd cycles in G. Then, a(1tv) = —in Z. Let iii and 112 be two
mutually exclusive subsets of V(G) such that u € U\ and v € 112- If there exist other edges,
say xy such that both x and y have odd parity set-labels, then include any one of x and y to U\
and all other vertices to 112- Repeat this process until all adjacent pairs of vertices having odd
parity set-labels are counted. Then, (iii, I12) will be a partition of ¥ with desired properties.
Therefore, X is clusterable. O

Let > be a strong IASL-signed graph, whose underlying graph G is a non-bipartite graph.
Then G contains some odd cycles. If Cris an arbitrary odd cycle in G, then % is balanced if and
only if the number of negative edges in Cr is even, which is possible only when the number of
positive edges in Cris odd. It is possible only when at least two adjacent vertices must have
even parity set-labels. A necessary and sufficient condition for a strong IASL-signed graph to
be clusterable is described in the following theorem.

Theorem 7. A strong IASL-signed graph X is clusterable if and only if every odd cycle of the
underlying graph G has at least two adjacent vertices with even parity set-label and at least
two adjacent vertices with odd parity set-label.

Proof. Let ~ be a strong IASL-signed graph with underlying graph G, where G is a non-
bipartite graph. Then, G contains odd cycles. Let Cr : M\ -.. v\ be a cycle of length r in
G. If Z is clusterable, there exists a partition of vertices (iii, 112) such that all edges having
end vertices in the same partition have positive sign and the edges having end vertices in the
different partitions have negative sign. If all vertices of £ have even parity set-labels, then all
edges of Z will be positive edges. Hence, all vertices of Z must belong to the same partition,
say iii, making the other partition, say U2 empty. If one end vertex of every edge of Z has even
parity set-label, then also all edges of Z become positive edges. In this case also, all vertices of
> are in the same partition and the other partition is empty. Hence, there must be at least one
edge in Z such that its both end vertices have odd parity set-labels.

Conversely, assume that every odd cycle, say Cr, contains two adjacent vertices having
even parity set-labels. Without loss of generality, let W and v2 be the vertices in Cr, which have
even parity set-labels. Let VW2 € U\ Let all other vertices have odd parity set-labels. Since

(™ 3) = +/ v3must also be an element of U\ Since (r{p&3) = — P3 € 112- Proceeding like
this, we have v+, v/,..., vr \ are in U2 and 05,v7, ..., vr are in U\. This partition (iii, iir) is a
clustering for Z. O

In this context, the questions on the balance and clusterability of weak 1ASL-signed graphs
arouse much interest. In the following section, we discuss certain properties of weak IASL-
signed graphs that are similar to those of strong IASL-signed graphs.

2.2 Weak IASL-signed graphs

Balance and clusterability of the induced signed graphs of weak IASL-graphs has been de-
scribed in the following theorems. Analogous to Proposition 6, the balance of weakly uniform
IASL-signed graph can be described as follows.



Proposition 4. A weakly k-uniform IASL-signed graph is always balanced.

Proof. Let X be a weakly k-uniform IASL-signed graph with the underlying graph G, where k
is any positive integer greater than 1. Then, G admits a weakly A-uniform IASL, say /, then
/+(e) = kforalle € G. Then, the signature ¢ is givenby cr(e) = (~1)kfor all e € Z. Therefore,
the signs of all edges of Z are all odd or all even. Since the underlying graph G is a weakly
£Luniform IASL-graph, then G is bipartite (see [4]). Therefore, G has no odd cycles. Therefore,
the number of signs, positive or negative, of edges in each cycles are even. Therefore, for any
cycle Crin Z, cr{Cr) is positive. Hence, % is balanced. O

The following theorem discusses the clusterability of weakly uniform IASL-signed graphs.

Theorem 8. A weakly k-uniform IASL-signed graph Z is clusterable ifand only ifkisapositive
odd integer.

Proof. Let the given weakly k uniform IASL-signed graph X be clusterable. Then, there exists
a partition (Lii, U2) of non-empty subsets of V(Z) such that the end vertices of positive edges
belongs to the same partition and the end vertices of negative edges belong to different parti-
tions. If k is even, then all edges in Z are positive edges and all vertices in X belong to the same
partition, say U\. Therefore, U2 = 0, which contradicts the hypothesis that Z is clusterable.
Hence, k is an odd integer.

Conversely, assume that k is an odd integer. Then, every edge of G is a negative edge. Then,
the bipartition (¥Y\,¥Yr) of the underlying graph G, where W is the set of all mono-indexed
vertices and V2 is the set of all vertices having set-indexing number k, will form a 2-clustering
of . That is, X is clusterable. O

Balance of a weak IASL-signed graph whose underlying graph is a bipartite graph is dis-
cussed in the following result.

Proposition 5. A weak IASL-signed graph 2, whose underlying graph G is a bipartite graph,
is balaced ifand only if the number of odd parity non-singleton set-labels in every cycle o/Z
is even.

Proof. Assume that a weak IASL-signed graph X is balanced. Note that for the corresponding
underlying graph G, the set-indexing number of every edge, not mono-indexed, is the cardi-
nality of the non-singleton set-label of its end vertex. Hence, for every odd parity non-singleton
vertex set-labels in X, the corresponding edge has a negative sign. Hence, for any cycle Cr in
> we have cr(Cr) = + and this is possible only when the number of odd parity non-singleton
vertex set-labels in Cr of X is even.

Conversely, assume that the number of odd parity non-singleton vertex set-labels in any
cycle of Z is even. Therefore, the number of negative edges in X is even. Hence, for any cycle
Crin X, ¢(Cr) = + and hence % is balanced. O

The following theorem establishes a necessary and sufficient condition for a weak IASL-
signed graph whose underlying graph is a bipartite graph.

Theorem 9. The weak IASL-signed graph Z, whose underlying graph G is a bipartite graph,
is clusterable if and only if there exist some non-singleton vertex set-labels o/% which are odd
parity sets.

Proof. Let G be a bipartite graph with bipartition {M\, \2). Then G need not have any mono-
indexed edge. Then, without loss of generality, let W contains all mono-indexed vertices and
V2 contains all vertices having non-singleton set-labels. Let ~ denotes the corresponding in-
duced signed graph Z of G.

Assume that some set-labels of the vertices in V2 are odd parity sets. Since the mono-
indexed vertices in G are not adjacent in G, all vertices in W can be in the same cluster U\ if
exists. Then, by the definition of clustering, the vertices having even parity set-labels cannot be
included in the second cluster U2 as the signs of edges connecting these vertices to the vertices
in M\ are positive. Therefore, let lii = Vi UV2and U2 = V2 —\2, where V] is the proper subset
of all vertices in V2 having even parity set-labels. Clearly, all the edges in the same partition,
if exist, have positive signs and the edges connecting the vertices in different partitions have
negative sign. That is, G is clusterable.

Conversely, assume that Z is clusterable. Then, there exists a partition (LL,, U2) of the vertex
set V() such that all edges connecting the vertices in the same partition have the positive sign
and the edges connecting the vertices in different partitions have negative sign. Let U\ contains
all vertices in V\. Any vertex uin V2, having an even parity set label and adjacent to some vertex
v in VW must also belong to LW as cr(iiv) — +. Hence, if the set-labels of all vertices in \2 are
even parity sets, then U2 = 0, which is a contradiction to the hypothesis that ¥ is clusterable.
Therefore, the set-labels of some vertices in V2 are odd parity sets. O

In this context, it is much interesting to check the balance property of weak IASL-signed
graphs whose underlying graphs are non-bipartite. Hence, we have the following theorem.

Theorem 10. A weak IASL-signed graph %, whose underlying graph G is a non-bipartite
graph, is not balanced.

Proof Since G is a non-bipartite graph, G contains odd cycles. Let Crbe an odd cycle in G. If
is balanced, then the number of negative edges in Cr is even. When one vertex, say v, of G has
an even parity set-label, then the two edges incident on it will have the positive sign and the
remaining odd number of edges in Cr have negative signs. If u and v are two adjacent vertices
in Cr, then the three edges incident on these two vertices become positive and the number of
negative edges in Crbecomes even.

Therefore, if G is balanced, then at least two adjacent vertices must have even parity set-
labels. This contradicts the fact that G admits a weak IASL. Hence, X~ is not balanced. O

The following result is a straight forward implication of the above theorem.

Corollary 1. A weak IASL-signed graph Z, whose underlying graph G is non-bipartite, is not
clusterable.

Proof. For any signed graph %, we have 2-clusterability implies the balance in . But by The-
orem 10, a weak IASL-signed graph %, whose underlying graph is non-bipartite, can not be a
balanced signed graph. Hence, the weak IASL-signed graph X is not clusterable. O

Another interesting type IASL-signed graph is the signed graph which admits an isoarith-
metic IASL. In the following section, we discuss the properties of these types of signed graphs.



2.3 Isoarithmetic IASL-signed graphs

The following theorem describes a necessary and sufficient condition for an isoarithmetic
IASL-signed graph to be balanced.

Theorem 11. An isoarithmetic IASL-signed graph X is balanced ifand only ifevery cyclein X
has even number of distinctpairs of adjacent vertices having the same parity set-labels.

Proof. Let 2 be a an isoarithmetic IASL-signed graph. Then, for every edge uv in E(X), the
cardinality of the set-label of uv is \f+ (uv)\ = \f(u\ + |/(f)] —1- Then, \f+ (uv)\ is odd if both
f(u), f(v) are of the same parity and X+ (uv) Jis even iff(u), f(v) are of different parities.
Assume that X is balanced. Then, the number of negative edges in every cycle of X is even
and the number of disjoint pairs of adjacent vertices having the same parity set-labels is even.
Conversely, assume that the number of disjoint pairs of adjacent vertices in every cycle Cr of
> having the same parity set-labels is even. Then, the number of negative edges in Cr is even.
Therefore, % is balanced. O

What are the conditions required for an isoarithmetic IASL-signed graph to be clusterable?
The following result provides the required conditions in this regard.

Proposition 6. An isoarithmetic IASL-signed graph X is clusterable if and only if ~ contains
some disjointpairs ofadjacent vertices having the same parity set-labels.

Proof Note that a connected signed graph Z is clusterable, if and only if = must have negative
edges connecting the vertices in different partitions. Hence, if an isoarithmetic IASL-graph Z
is clusterable, then X contains negative edges which is possible when some disjoint pairs of
adjacent vertices in ~ must have the same parity set-labels. O

3 Conclusion

In this paper, we discussed the characteristics and properties of the induced signed graphs
of certain IASL-graphs with a prime focus on clusterability and balance of these signed graphs.
There are several open problems in this area. Some of the open problems that seem to be
promising for further investigations are following.

Problem 1. Discuss the k-clusterability of different types of IASL-signed graphs fork > 2.

Problem 2. Discuss the balance, 2-clusterability and general k-clusterability of other types
of arithmetic IASL-signed graphs of different types of arithmetic and semi-arithmetic IASL-
graphs.

For X C Ng, an IASL / of a graph G, is said to be a topological IASL of G if
T = f(V(G)) U{0} is a topology on X (see [12]) and is said to be a topogenic IASL of G
if T = f(V(G)) Uf +(E(G)) U{0} is atopology on X (see [13]). Then, we have the following
problem.

Problem 3. Discuss balance and k-clusterability of topological and topogenic IASL-signed
graphs.

An integer additive set-indexer / of a graph G, with respect to a finite set X C No, is said
to be a graceful integer additive set-labeling of G if f +(E(G)) U{{0},0} = V(X) (see [14]) and
is said to be a sequential integer additive set-labeling of G if f(V(G)) Uf +(E(G)) U{0} = V(X)
(see [15]). Then, we obtain the following problems.

Problem 4. Discuss the balance and k-clusterability of graceful and sequential IASL-signed
graphs.

Problem 5. Discuss the balance and general k-clusterability of topologically graceful and topo-
logically sequential IASL-signed graphs.

Problem 6. Discuss the balance and k-clusterability of different types of integer additive set-
indexed graphs.

Study on several other IASLs under which the collection of set-labels of given IASL-signed
graphs form certain other subset structures like filters of the ground set. The study on certain
IASL-signed graphs, where the edge set-labels are the union or intersection of the set-labels of
end vertices.

Further studies on other characteristics of signed graphs corresponding to different IASL-
graphs are also interesting and challenging. All these facts highlight the scope for further
studies in this area.
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Cypnes H.K., TepmiHa K.A. BuBueHHS rpaciB 3i 3HaKamun Ha LinoyuncencHili aguTUBHIA MHOXUWHI 3HaYeHb
/] KapnaTcbki mateMm. ny6a. — 2015. — T.7, Ne2. — C. 236-246. Introduction

Hexaii 'P(IN0) no3Havdae MHOXWHY MNiAMHOXXWH BCiX HeBig'eMHUX Linux ynucen No- Linoyucens-
HUM aANTUBHUM no3HadyeHHsAM (IASL) rpada G Ha3uBaeTbCA TaKa IH'€KTUBHA MHOXWHHO-3Ha4YHa Let
PyHKyis / : V(G) — 'P(Nq) \ {0}, wo iHaykoBaHa cyHKuUisa / + : E(G) — "P(No) \ {0} Bu-

3HayveHa f +(uv) = f(u) + f(v), ge f(u) + f(v) o6'egHaHHSA MHOXMUH f(u) if(v). Fpad, AKnii mae /O) = rI]E:()/«Z co

uinoyncensHe aanTuUBHe nNo3HayveHHs (IASL), 3a3Bnyaii HasuBawTb IASL-rpachbom. IASL/ rpaca G . . . . . . . .

HA3MBAKOTH L|iNIOUMCENbHO AAUTUBHO iHAeKcylounM (IASH), SKWLO acoliioBaHa yHKLIs / + TaKoX be an entire function, /— a positive continuous on [0, + 00) function. Function / is said to be

iH'eKTUBHA. Y Wil cTaTTi MM BM3HAYaEMO MOHATTA LiNOYMNCENIbHO aAUTUBHOIO MO3HAaYeHHA rpadis of bounded /-index [3], if there exists N € Z+ such thatforalln € Z+andz € C

3i 3HaKamMu Ta oNuUCyeMo BigNoOBiAHI BNacTUBOCTI LMUX rpadis, AKi MaloTb AeAKi TUNW Liflo4nNCceNbHO-

ro afMTUBHOIO MO3HAYEHHS. . .

. i . ) _ _ <max /1/Q il mo<*<r]Jl «i

KntoyoBi cnosa i hpasu: rpadw 3i 3Hakamu, 36anaHcoBaHi rpadu 3i 3HakaMu, KnacTepmsauisa rpa- ni/»(lz]) - maxX\W(]z]) 2)

iB 3i 3Hakamu, IASL-rpadu 3i 3Hakamu, cunbHi IASL-rpadu 3i 3Hakamu, cnabki IASL-rpacu 3i
3HakKamu, izoapumeTnyHi IASL-rpacdu 3i 3Hakamu.

The least such integer N is called /-index and is denoted by N(f, /). If G C C and there exists
N € Z+ such that inequality (2) holds foralln € Z+ and z € G, analytic in G function 7/ is
said to be of bounded /-index on (or in) G, and /-index is denoted by N(f, I; G). Theorem 2.2
[3, p.33] implies that i ff is an entirefunction, G is a bounded domain and | — a positive continuous
function, then f is of bounded I-index in G.

An analytic univalentin D = {z : g < 1} function (1) is saidto beconvexif/(D)is a
convex domain.Condition Re {1 + z/"(z)//'(z)} > 0(z € D) is necessary and sufficient [1]
for a convexity of /. Every convex function is univalent in D, and therefore f\ @® 0.

Differential equation

w'- (~-v-J1 w=0 €))
1

is said to be the Weber equation. Properties of the solutions of the Weber equation ifv ¢ —
are investigated in [5] and the following theorem is proved.
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Theorem ([5]). If v &® — the general solution of the equation (3) is of the form

w(z) = Ci<p(z2) + C2zip(z2), and the functions @(¢) and ip(z) have the following properties:
) 28 18 i ) 11
1) N(o@,1) < 1with I(]z]) & ™ v+ 1] + N andN(ip,l) < 1withl( Jz]) & E(|2v+ 1 +2);

2) if (762 - y/388564)/343 < \v+ 1] < (762 + M388564)/343/then @({) is convex in kO,
and if (2350 - ~3590164)/639 < \v+ 1] < (2350 + ~3590164)/639 then Y(Q) is convex
inoO;

3) if (1623 - V2430289)/364 < Jav+ 1] < (1623 + ~2430289)/364, then () is close-to-
convex in KO, and if (4915 - \/22088809)/684 < \+ 1] < (4915 + >/22088809)/684,
then ip(z) is close-to-convexin D;

4) forv € IRif (— —y/31)/2 < v < (— + y/31)/2 the function @({) is close-to-convex in
D, and if (—11 —y/91)/2 < v < (—11 + y/91)/2 the function ip(z) is close-to-convex in

D;
5 InMf(r) = (1L + and InM”(r) = (1 + °(1))] as r —»00, where
Mf(r) = max{|/(2)| : H = r}.
In this article we consider the case v = — Then from (3) we have
w" —Z4£w = 0. @)

Let us find the solution of the equation (4) in the form (1). Since

[ee] I 0o

E (n+ I)(n+2)fn+2ztt- j E fn-2Z' =

«=0 ~n=?

s02/2 = 0,6/3 = 0and 4(n+ 2)(n + |)/«+2 = /«-2 if « > 2. We can see that foralln € N
/4,-2 = /tn-i = 0, and /,,44 depends on /,,. Therefore the solution of the equation (4) is of the
form

w(z) = Cia(z4) + C2zjS(z4).

Let a;(z) = a(¢4). Then w'(z) —4¢3a'(¢4), Ci/'(Q) = 12C2a'(¢4) + 16¢6a"(¢4), and, therefore,
the equation (4) in this case is of the form 16z6a"(z4) + 12{2a'(¢4) - ~a(z4) = 0. After elemen-
tary transformations and replacement z4 on z we will get

64za"(z) + 48a'(z) —a(z) = 0. (5)
If we suppose that w(z) = z/3(z4), then, like before, we will get

64¢p" (¢) + 80B*(¢) -B (L) = 0. (6)

We will find a recurrent formula for the coefficients of the function a(¢) = 1120 anzZn, which is

the solution of the equation (5). Since

o o o

64 E ani(n+ 1. +48 E(N+1)2'- E &"Z2' ="
n—0

n=1 n=0

we equate coefficients at the same powers of the variable z and get 48a1 —a0 = 0 and
(64n(n + 1) + 48(n + l))amti —an = O0ifn > 1. Note, if agq = 0 then a(() & 0. Thus we
putao = |. Then

‘m=15& ~-1)- "£1- (7

For the coefficients of the function $({) = Z pn¢n which is the solution of the equation (6),
n=o
we have 80" - B0 = 0Oand 16(n + 1)(4u + 5)Btl - Bn=0ifn > 1. Ifwe putf0= 1then

fr-isfe W -1 )
1 /INDEX BOUNDEDNESS

Now we consider /-index boundedness of the functions a(z) and B({). For this purpose we
use the following lemma.

Lemma 1 ([4]). Ifa function (1) is an analytic in the closed discOr = {z: H < R},/g= 1,
and

E \m\Rn< a(R) < 1, )
n=1
ihen Dr) <1 wiih ZJz]) = N+ «(i?)
o —a(R))ER — 2’
Ifz€ 0<{< lthenR—F > (1 —)R and Lemma 1implies N (f,I; D”) < 1with

K\zN — (i _ Q)R(I —a(R)) *7ecause ™ N(f,1*;G) < N and /*(r) < I*(r), it is easy to prove
[3, p.23], that N(f, I*; G) < N. Therefore the next lemma is true.

Lemma 2. If an entire function (1) satisfies (9) and fo = Y\, then for every ¢ € (0, 1) and

R € (0, +00) theinequality N(f, I; O&k) < lholds with IN2\) = — 1~ 57~ {[OAA-
li - C)R{1- a(li))
Using (7) we have
f 1! ~ Jaci]RE R, R .k
E 48 E lafd 48 E 16k(Ak _1) 48 + E 16(jt + !)(4fc + 3) '
That is
£ (} ~ 16(fc + I)(4fc + 3)) = 48'

Since i6(fc+ iK4fc + 3) 224/ then above equality imPlies

i R/48 14R
£ " |- (R/224) “ 672- 3R ~~ ~

R
Therefore, to use Lemma 2 it is necessary — + —
Y48 " 2

Lemma 2 we have N (a, I; O™) < Iwith/(l%|) & —— +
v - U (1- 07672 - 17R)

72
< 1. Thatis R < E-—. For such R bv
17 y



Now we consider /-index boundedness of the functiona(z) inC\ For this purpose we
use the fact that a(z) satisfies differential equation (5), and therefore we have

x"(42) = ?oc'(z)+ 64%'(2)' If 12 >CK, | = 1/(ER) and R < 672/17, then we obtain

k"(2)] 3la‘(2)] ER ., ,, fla'(2)]
22 - 8" in + fesla@l - max x i7Ti"|aIl (@)

Let us differentiate the equation (5) n times. Then we obtain
64Ca("+2)(Q) + (64n + 48)a("+1)(z) —a™(z) = 0.
Thus, if g > (R,1 —I/~"R) and R < 672/17, then for all n > 1 we get

h(n+2)(z)] ~ 64ft+ 48  JaC+)@)] ~ 1 M2\
(ft + 2)1/"+2 — B4A(ft + DJz|Z (ft + D)1Zn+l  64(Ft + 2)( + DJz]Z2 n\In

o B4ft+ 48 AC+DQl  "R/(ft+ 1) Jam@)l 7, Jf1 2@ a)Q]
6A(ft + 2) (ft+ 1)IZ"+1 1 64(ft + 2)  NZ« -~ E'j(ft+ I)z"+1 iz

(11)
Inequalities (10) and (11) imply forallne Z+ andze C\

lan@l i K(2)l
n\In

. . 1 ( 672\

thatis, N(a,I;C\D ") < 1with Z]Jz]) = — . Therefore, forall ( € (0, )and Re 7™0,— J
f1 672 HR 1
inequality N («,/) < 1holds with Z(Jz]) = max] ' (1 - g)R(672- 17R)j "'
T 672-17R 1 672 + HR 1344-6R _ , ,
we put { - 1344 _6R'4 en - (i _ £)R(672 - 17R) ~ R(672- 17R)' dE°le °r

1344 —6R
allR € (0, 672/17) we have N (a,/) < 1withZ(|z]) = ~ 672 _ iy”™y The minimal value of the

last function on (0, 672/17) is 33N ~~ AN = 224 N —

For the function B(¢) using recurrent formulas (8) we have

f I« IR*= £ + f INR* R i f 1& -"1** R i f R , IP*
80 f=2 80 £ 2 l16fc(4fc + 1) 80 ~ 16(fc+ I)(4fc + 5)
That is
R R
%:| 1 16(fc+ 1)(4fc+ 5)] 80" (12

SinCeT6 4 4M 5)- W 'S dR < W JEMfrom (12) We get

7 B S\ _RhPoss) T 1440fRsR:

- 1440 .
Therefore to use lemma 2 it is necessary R < A . For such R by lemma 2 we obtain
1440 + 13R

To investigate Z-index boundedness of the function $({) in€ \ we use the fact that ()

is a solution of the equation (6), i.e. B"(0) = —45[3'(Z) + 6—415(1). If 12 > £R, R < 48 and
z V4
Z= 1/ (ER) we have

I/S@I ~ s \p@n 7R AT 1 V43 72 I \V I i}
21N 8 M/ 128 \ i/ ' 11 ¢ <43>

Let us differentiate the equation (6) ft times. Then we obtain
64Zj6""+27(z) + (64ft + 80)B(N+I\L) —B™M\Q) = o.

Therefore, if A > &R, R < 48 and Z= 1/("R), then for all ft € N we get

N+ @1~ eaft+ 80 | M+1)(QI | 1 \3{n)(O\
(n+ 2\Int2  64(ft + 2)|zl/ (n + DIZH+1  64(ft + 2)(ft + D]z]Z22 n\In
bin + 80 [fn+1>2)] g«/(B+ I)]*"M(2)]| f |™N+1x(2)] |7i">(Q)it
64(ft + 2) (ft + 1)IZ1+1  64(ft + 2) fIZI — | (ft + D1Zz"+1" iz )
(14)
Inequalities (13) and (14) imply thatforallft EZ+andz e C \ inequality
o <rex VAR s
ftz
holds, that is N(B,1; C \D”r) < 1 with Z]z]) = Therefore, for all § € (0, 1) and
R € (0, 48) inequality N(B, 2 < 1holds with Z(Jz]) &€ max | A_’%)‘l:?lzml)sizsR) y
_ 1440-23R 1 1440+ 13R 2880 - 10R ~
IfWepUt{ = 2880- 10R' JIEM *R = (1 —g)R(1440 —23?%); R(1440-23R)- TbETEE’ TE
forall R € (0, 48) we have N(B,1) < 1with Z|z]) = = =— 231" minima“value of the
last function on (0, 48) is ifR=288f1— J]
Vv X 720 y M23

Therefore, the following proposition is true.

Propositioni. N(a,Z) < 1 withl(\z\) = andN(/5,2) < 1 withl(\z\) =

720

2 Geometrical properties

We use following lemma to investigate convexity of the functions a(z) and B(().

+00

Lemma3 ([2]). If 22n \fn\< I/ } then function (1) is convex in D.
n=



Using recurrent formula (7) we get

P? 2, , . t2 2 kn-ll 4 "4l 2, |
E nlasl <4] «2i+E« 16n(4n_1) - 10752 + E 216n2(4n + 3)”

that is +0 / n Ll \ A
> V ~16n2(4n+3)) U™ - 2688

LN 3

Since for n > 2 we have the inequality 1 - 1652(4a + 3) - 1 _ 704' so (15) imPlies

+H? 2 172688 1
> 7~ - 701/704 48

Applying a similar reasoning to the function B(¢) we obtain

+0° 4 n+ 1
SXIN - +153n 16n(@n+ 1) 23040 + = 16n2(4n + 5)n

that is

Z 0 —16m2(4m+5)) H~A - 5760°

SinCel- 16J(4+V 5j-1_ 4 'S

V? 2lo I~ 1/5760 ~ 1 _ A,
E n - 829/832 - 80

Therefore, the next proposition is true.

Proposition 2. Functions a(z) and /3(2) are convex in D.

3 Growth

The next proposition describes the growth of the functions a(z) and B(().

Proposition 3. 1nMn(r) = (1 + 0(1))”~ and\nMp(r) = (I +o(l))™ asr
Mf(r) = max{|/(2)] : Kl = r}.

Really, since

— 0in- 1 —FTLUTIC(n LA
Uh~ 16u1(4un-1) “ 16"n!  4fc—1  64"(nD)2~ Vv 4k- 1/

so foreverye > Oand foralln € N

64"(NN2 - - 64»(n!)2°

where K = K(¢) is a positive constant.

To obtain an asymptotic behavior of the function oc{z) from inequality (16) we will consider

{00 yYI

the function g(r) — ZO 7\573/2 where r > 0. Let }ig{r) = max{r"/(nH)2 : n > 0} be the
n= :

maximal term of the last series and vg(r) = max{n : rn/(n")2 = }ig(r)} be the central index.
Then Vg(r) —n forn2 < r < (n+ 1)2, therefore vg(r) = (1 + o(l))>/r if r —+ 00. Therefore

In*(r) = In~(l) + 1 = (I + o())2y/r, r -y +00,

and by the Borel's theorem we get InMg(r) = (1 + o(l)) In~(r) = (1 + o(\))2yfr, r =¥ +00.
From (16), in view of arbitrariness of €, we have

InMa(r) = (1 + o(l))2y/”~ = (1L + o(1))-~-, r-> +00.
Similar we  getasymptotical equality InMp(r) = (1 + o(I))»— r == +00.

4 Main theorem

Propositions 1-3 imply the following theorem.

Theorem 1. The general solution of (4) can be written in the form w[z) = Ci«(z4) + C2z/3(z4),

where entire functions a(z) and B({) are convex inO, N(oc,l) < 1 with Z]z]) ¢ 314323;/238
41 + 2\/414 /
and NB,1) < 1 with Zlz) & ="~ "2Z also nMa(r) = @+ o(IN*T and

InMB(t) = (1 + o(I))—Fr asr —v oo, where Mf(r) = max{|/2)] : H = r}.
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TpyxaH KHO.C. BnacTunBOCTIi po3B'sA3KiB piBHAHHA Bebepa // Kapnartcbki matem. ny6n. — 2015. — T.7,
Ne2. — C. 247-253.

Aocnig>xeHo BnactmeocTi pyHKLIN a(l) Ta B(L) Takmx, wo ft(z4) ta {B(L4) e NiHilAHO He3anex-
HUMW PO3B'A3KaMu PiBHAHHA Bebepa w" — —Vv- \)w = 0 npuv — - 5, a came o6MexeHicTb
/-iHAeKcy, ONYyKNICTb Ta MOXX/IMBE 3POCTaHHA.

Knto4yoBi cnosa i cpasun: uina pyHKLUisA, o6MeXxeHicTb /-iHAeKCYy, 3pOoCTaHHSA, onyka QYyHKLis,
piBHAHHSA Bebepa.



ISSN 2075-9827 e-ISSN 2313-0210 http://www journals.pu.if.uaZindex.php/cmp

Carpathian Math. Publ. 2015,7 (2), 254-258 Kapnatcbki matem. ny6n. 2015, T.7, Ne2, C.254-258

d0i:10.15330/cmp.7.2.254-258

Fedak O .i.1, Zagorodnyuk A.V.2

STRICTLY DIAGONAL HOLOMORPHIC FUNCTIONS ON BANACH SPACES

In this paper we investigate the boundedness of holomorphic functionals on a Banach space
with a normalized basis {en} which have very special form f(x) = /(0) + L~=i c«*" and which we
call strictly diagonal. We consider under which conditions strictly diagonal functions are entire and
uniformly continuous on every ball of a fixed radius.
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Introduction and Preliminaries

Let X be a separable complex Banach space with a normalized basis {e,,}~=1. A holomor-
phic function / on an open ball B(0,r) of X centered at zero (of finite or infinite radius r) will
be called strictly diagonal with respect to the basis if it is of the form

@ @
f(x) = /(0) + E cnK’ Xex, where x = E Xen (1)
n=1 n=1

We can associate a formal power series with / in such way

@
7(0 = E_Qt cc=/() feC

n=0
and we will write 7 = 7/and /7 = fy if it is necessary. Note that the strictly diagonal function
f(x) —ZI=1xnis the well-known example [4, p. 169] of entire function on ip, 1 < p < ocoor
on @ which is not of bounded type (the radius of boundedness at zero is equal to one). On
the other hand its associated series 7 (f) well defines a holomorphic function only on the open
unit disk Di C C. More examples of entire holomorphic functions which are not bounded on
all bounded sets can be found in [1, 2, 3].

The purpose of this paper is to examine properties of strictly diagonal holomorphic func-
tions in terms of associated power series and construct some new interesting examples of holo-
morphic functions on X.

Le us recall that a continuous function /: X —C is said to be holomorphic at a pointa € X
if it has power series representation

@
/(") = Lin(x)

(C) Fedak O.1., Zagorodnyuk A.V., 2015

in a neighborhood of a, where f,, are continuous n-homogeneous polynomials. A function 7 is
entire if it is holomorphic at each point of X. The space of all entire functions on X is denoted
by H(X).

The radius of uniform convergence of a function f at a can be calculated by formula

pa()) = (limsup JIK41")_1

n—oo

and coincides with the radius of boundedness. In particular, each entire function is uniformly
bounded on the ball B(a,r) centered at a of radius r if r < pa(f) and unbounded on B(a,r) if
r> Pa(f).

For details on holomorphic functions on Banach spaces we refer the reader to [4, 5, 7].

1 Main results

Throughout in this section / is a strictly diagonal function defined by (1).
Theorem 1. LetS > 0 and )

7(0 = E %<
n=0

converges in the open 3-disk Os —{t € C: N\ < <&}. Thenf7 € H(X) and pz(fy) > & for every
ze X

Proof For agiven x € X let hgbe a number such that \x\ < r < ¢ for every n > ng. Then

Q Q
\iYOONS YjGok + E XKW Y200k + E XKwk < 00-
k=0 k=no +1 k=0 /c=uno+1

So /7 is well-defined at any point of X. Clearly /7 is G-holomorphic and
Poify) = (limsup Jnl») 1 = po(7) > o-
tI—0

This, in particular, means that /7 is locally bounded at 0 and so it is holomorphic. Let z be a
fixed element in X. Forany 0 < r < 3 let mo be a number such that \z,|]< ~ Vn > mo. Then
for every x € X, Ixll < r, we have

o o 5—r \
N7(x+ 2\ < E ck(zk+Xk)k + E OGN+ XNk < E ck(*k + XKY + 7( B +
=0 ol =0 (— +)

Let us denote
no

(d-r \
c(z,r):= E ck(zk + Xkf + 7
k=0 (— #H)
Then for every z € X and r < 9, /7 isbounded in B(z, r) by the constant c(z, r) which depends
only onz and r. That is, pz(fy) > 9. O

Definition 1.1. A basis {en}“=1 issaid to beboundedly complete iffor every sequence ofnumbers
{bn}~=I such thatsup JE«=i Il < 00 the series i bre,, converges to a vector in X.
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Note that the standard basis in £p, 1 < p < 00, is boundedly complete while in Gyit is not.
Moreover if {e,}~=1 is not boundedly complete, then it contains a subsequence equivalent to
the standard basis in co (see [6]).

Definition 1.2. We say that K is the index of boundedness of {en}~=1 if

()
™Ml = 0E Xn€n\= &6>0
=1

implies that the cardinality ofset {x*.. [X)] = <G does notexceed K.

Theorem 2. Let {e,}~=1 be a normalized basis of a Banach space X which has a finite index
of boundedness K and 7 (f) = Y~=Qcntn is holomorphic and bounded on the disk D™ Then
fy € H(X) and for every z € X, fy is bounded on B(¢, 9).

Proof. From Theorem 1 it follows thatfy € H(X). For agiven x € X, |MI < 1, we have
I/TMI < J7c,,i" + sup]’ (D]
n=0

So
K

sup V7T < E cne" + sup 'HOI < °°
T, VT < F jone” + S

and fy is bounded on B(0, §). Using the same work like in Theorem 1 we can show that f ris
bounded on B(z, 3) for every fixed z € X. O

Definition 1.3. Let us suppose that there are 0 < ¢ < 1 and positive integer Ke such that
IMI = 1implies card [xn: &\ < 1—¢} < Ke < oo. Then we say that Ke is the index of ¢-
boundedness of the basis {e,,}*=1.

Clearly that if X has an index of e-boundedness Kc for some ¢ > 0, then Ke = K.

Example 1. Let X — (the £\-sum). Thatis, for every

X NN = OAX"x2 xv x2' x|’ m)> XE€ X,

we have ©
IIX = V max x/M.

Basis V=l is boundedly complete. Indeed, let {by }ljy=1 be a sequence of numbers

such that Ek=i maxi<j<k Itfl < c for every m and some ¢ > 0. Then Z*=1 maxi<j<k Iyl con-
verges and so X byek € X. On the other hand for every K € N we can pick

X0= 4+l + ---+ ek+\

with jIXgl = 1 and so {ey}”i =1 has no finite index of boundedness.

Example 2. Let X be the £\-sum ofin, X —0 ~=1 £" and (Ey}Mily=1 be the natural basis. This
basis has the index of boundedness K = 1. Indeed, suppose ji] = 1 and for two different
coordinates ]l = 1and [x- |= 1. We have two cases:

1) itk —s, then ] > (kX + RN > 1/

2) itk @ s, then M| > 2.

This contradicts our assumption. So, just one coordinate may have the absolute value equals
one.
Let0 < € < land K( be a fixed positive integer. Let us find A€ N such that (1 —£)K} <
Letm > 2max(A:.0,iCE+ 1) and
Xo= (1- e)ef + ...+ (1- £)en+l,
then
Lixollr = (Ke+ 1)(1- r)T= (Ke+ 1)(1- ¢)2

< (Ke+ 1)(1-e)t(T—&)T < (X, +1)_1 _ (v _¢)?,

that is,

IPOE< (1 —€)?)« = (1 —€)2.
It means that the index ofe-boundedness of the basis is greater than Ke. Since Ke is arbitrary,
the basis has no finite index ofe-boundedness.

Theorem 3. Let {e,}~=1 be a basis ofa Banach space X which has an index ofe-boundedness
Ke for every 0 < € < land 7(t) = E~=ocntn converges inthe disk Dj.Then fy is uniformly
continuous on B(z, 1) for everyz € X.

Proof. Let us prove the statement for the case B(0,1). The general case follows from there like in
Theorem 1. Note that 7 (i) is uniformly continuous on the closed disk Dp forevery 0 <p <.
Foragiven 0 < e < llet w > 0 be such that

[7() -7(*2)] < ¢ 2
ifonly i —t2\< 6 fort\2€D 1l ef2. Letx,y e X, IMI< 1, IMI< 1
() @
X = xnen/ Y — Y2 Ynern-
»=1 Y S
Then there is a number m < Ke + 1 such that for
@ @
X= 2 X,en and y = 22 ynen
n=m n=m
IMI < 1—eand |MI < 1—¢ Clearly that fy is uniformly continuous on B(0,1) if and only if
@

fy m= Z C'xn
n=m

is uniformly continuous on B(0,1). If |x—W| < 93, then \Nk —yk\ < § for k > m. Letr =
supk>m Ky —yk\Then from (2) we obtain
@ @ @

HAX) -1(y)iit = 1TE cnxn-y NI < E cnixn M| < E ca" <e:
n=m n=m n=m



Example 3. Let7 (f) = E~=i f’/then the entire function 7 is uniformly continuous on a unit
ball centered at anypointin£p, 1 < p < oo. Butitis not bounded in the unit ball in cq. Indeed
letXn= e\ + &+ ---+ en € Co, then f(XxNn) — N — oo. By the same way itispossible to show
thatify(t) is unbounded inDj ¢ C, then /7(x) is unbounded in the unitball ofca.

Proposition 1.1. fy is bounded on B(z,r) ¢ foreveryz € @ifand only if ~(t) converges
absolutely on D,-.

Proof. If 7 (f) converges absolutely on Dr, then it is easy that fy is bounded on B(z, r) ¢ co for
every z € @ To prove the converse statement without loss of the generality we assume that
r— 1 If 7(f) = £~=1cntn does not converges absolutely on Di, then there are numbers b,,,
\n\—1, such that E~=i cnbn ~>00 as n —00.

Let x,, = Nb-nand xn = Z'TE\*nEn: Clearly |pwl® = 1 and fy{xm) = E«=icnbn= m -> 0o
so fy (x) is unbounded on B(0, 1). O
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focnig>eHo 06MeXXeHICTb Fo/TIOMOPHUX PYHKLIN Ha 6aHaxoBUX NpocTopax 3 6asucom {en},
AKi MaloTb ay>Xe cneuianbHnii Burnag f(x) = /(0) + E~=i O%" i AKi MW Ha3MBaEMO CTPOro fiaro-
HanbHUMW. PO3rNAHYTO NMPU AKNX YMOBaXxX CTPOro AiaroHanbHi QYHKLUIT 6yayTb LinMmu i piBHOMIp-
HO 0O6MEXXeHUMM Ha BCiX Kynax hikcoBaHOro pagiyca.

Knwouosi cnosa i cpasn: rosomopdHi yHKLIT Ha 6aHaxoBMX npocTopax, 6asncu B 6aHaxoBUX
npocropax.
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UNIFORM BOUNDARY CONTROLLABILITY OF A DISCRETE 1-D SCHRODINGER
EQUATION

In this paper we study the controllability of a finite dimensional system obtained by discretizing
in space and time the linear 1-D Schrodinger equation with a boundary control. As for other prob-
lems, we can expect that the uniform controllability does not hold in general due to high frequency
spurious modes. Based on a uniform boundary observability estimate for filtered solutions of the
corresponding conservative discrete system, we show the uniform controllability of the projection
of the solutions over the space generated by the remaining eigenmodes.

Key words and phrases: observability, controllability, filtering.
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Introduction

Let us consider the 1-D Schrodinger equation

ut(x, ) + iuxx(x,t) =0, 0< x< 1, 0< f< T,
< u(0,f) = m(1,f) = 0, 0 <t<T, D)
» U(X,0) = u°(x), 0 <x<1,

where u® € Hq(0,1). It is well known that the energy

EQ =\ 1 \x(xp\2dx @)

of the solutions is conserved in time. Applying Fourier series techniques one can prove a
boundary observability inequality showing that, for every T > 0, there exists C = C(T)> 0

such that
T

E(0)< cJ[ \ux (1,t)\2 dt (3)
0
for every solution of (1).
As a consequence of this observability inequality and the HUM method [10], the following
boundary controllability property may be proved.
Forall T > 0and y0 € H_1(0,1) there exists a control v €L2(0, T) such that the solution of

( ift(x, t) + iyxx(x, ) = 0, 0<x<1 0< f<T,
<y t=0 vafH=v,0<f<T, (4)
I y(x,0) = y°(x), 0<x<1,

© Hajjej Z., Balegh M., 2015
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satisfies y(T) = 0.

This article aims at studying the observability and the controllability properties for space-
discrete and fully discrete approximations schemes of (1) and (4).

In the last years many works have dealt with the numerical approximations of the control
problem of the wave equation using the HUM approach [1, 4, 11]. It is by now well-known
that discretization processes may create high frequency spurious solutions which might lead
to non-uniform observability properties. The conclusion was that the controllability property
is not uniform as the discretization parameter h goes to zero and, consequently, the control of
the discrete model do not converge to the control of the continuous model. Some remedies
are then necessary to restore the convergence of the discrete control to the continuous one. We
can mention the Tychonoff regularization [6], a mixed finite element method [1], or a filtering
technique [7]. In the context of fully discrete conservative equations, we refer to [3], which
deals with very general approximation schemes for conservative linear systems. For space
semi-discrete approximations of Shrodinger equation, we mention the work [2] which study
interior observability and controllability properties, based on spectral estimates. Let us also
mention that the time semi-discrete Schrodinger equation has been studied in [13]. Our article
seems tobe the first one that deals with fully discrete Schrodinger equation in details providing
an uniform result of boundary controllability.

The outline of this paper is as follows.

The second section briefly recalls some controllability results for the Schrodinger equation.
In section 3, we study the space discrete observability and controllability properties. Section 4
is devoted to prove observability and controllability problems of fully discrete approximation
schemes of (1) and (4).

1 The continuous problem

In this section, we recall briefly the controllability property of the Schrodinger system (4)
(see [10,14] for more details).

Theorem 1. Forall T > 0and (y0) € H~A(0,1) there exists a control v € L2(0, T) such that the
solution of (4) satisfies y(T) = 0.

Multiplying in (4) by i, integrating by parts in (0,1) x (0, T) and using the equations (1)
that u satisfies we deduce that

i [ vux(Ddt+ [ y°u®dx — f y{T)u(T)dx.
Jo Jo Jo
Taking imaginary parts in the last equality, we deduce that
Re f vx(l)dt + Im f y°U°dx = 0.
Jo Jo

Here and in the sequel Re, Im and i stand respectively for the real part, the imaginary part of
a complex number and the conjugate of u.

The control of minimal L2-norm can be obtained by minimizing functional /: Hg(0, 1) —» IR
defined as follows: n

J(w) = No \x (I, H\adt - Im J% yeuedx. (5)
The functional J is continuous and convex. Moreover, J is coercive because of the observability
inequality (3). Then, the following result holds.

Theorem 2. Given any T > 0 and y0 € H_1(0,1) the functional J has an unique minimizer
u® € Hq(0,1). Iflis the corresponding solution of (1) with initial data i° then v(t) = —ix(1, t)
is the control of (4) with minimal L2-norm.

As said in the introduction, the controllability property is equivalent to the observability
inequality (3).
Let us finally remark that the solution of (1) admits the Fourier expansion
u(x, t) = J2 ckeikzndsin(knx),
k>0

with suitable Fourier coefficients depending on the initial data u®.

2 Space semi-discretizations

In this section, we consider the space semi-discrete version of the continuous observability
and controllability problems. Let N be a nonnegative integer. Seth = j~ and consider the
subdivision of (0, 1) given by

0=x0< X\ —h < mm< X —jh < mmm< XN+i = 1/

i.e., § = jhforallj = 0,..., N+ 1 Consider the following finite difference approximation of
4:
yi(t) + AFH()- W +y/(t) = o, O0<i<l,/ =1,....N,
yo(0 = 0, yN+i(t)= vh(t), 0<t<T, (6)
yao) =y, j—1,...,N.

As in the context of the continuous Schrodinger equation above, we consider the uncon-
trolled system
u@+iu-"\r2p -u )= 0<t<T,;=1,.,N,

uo{t) = uN+i(t) —0, 0<t<T, (7)
uj0) = ur, j=1,...,N.

The energy of system (7) is given by

3A)—I_e=0 h

which is a discretization of the continuous energy E(E). It is easy to see that the energy £/, is
conserved along time for the solutions of (7), i.e.

E/r(f) = E/,0) forall 0<t<T.
We observe that the system (7) can be rewritten in the following simplified form
uh(t) - iAhuh(t) = 0, 0 < t < T, uh(0) = uh, (8)

where uy stands for the column vector (u\,..., n~)T, JV, denotes the matrix

-10 0\
(2
1 -1 - m® O
Ah =
h2 0 .- . -1

Vo 0 -1 2y



entering in the finite difference discretization of the Laplacian with Dirichlet boundary condi-
tions. We consider the eigenvalue problem associated with (7):

i*it = B.9), j—lomN,

©)
®o = d,v+l = 0.

Let us denote by B1,.. -,BN,it the N eigenvalues of (9). These eigenvalues can be computed
explicitly [8]. We have

BH ~kh  *2 Ty 2) sk f

The eigenfunction ®kk — (p\K .. -,d ) associated to the eigenvalue B~ can also be com-
puted explicitly:

dkk = sin(jnhk), j=1,...,N.
Solutions of (7) admit a Fourier development on the basis of eigenvectors of system (9). More
precisely, every solution w, — (Uj)j of (7) can be written as

()= fv w ot
k=1
for suitable coefficients ak € C, k —1,..., N, that can be computed explicitly in terms of the

initial data.

2.1 Uniform observability of (7)

The main goal of this subsection is to analyze the following discrete version of (3):

£.0) < C{Tn) IT UN g, (10)

) h

where C(T, h) is independent of the solution of (7).
The observability inequality (10) is said to be uniform, if the constants C(T, h) are bounded
uniformly in h, as h —0. However, the following result asserts that this is false.

Theorem 3. Letuis asolution of (7). Forany T > 0 we have

sup En(0) ->00 as h —0.

" fo W dt
Before getting into the proof of Theorem 3, let us recall the following property of the eigen-
vectors of (9) proved in [7].
Lemma 1. For any eigenvector ® with eigenvalue  of (9), the following identity holds:
N s

- +T—‘P€ é ? (DV % I2 Aq)\zl

|\le h “4 -0 £ 4- A2 £

1

Proofof Theorem 3. For h > 0, consider the particular solution of (7)

uh(t) = BV ION\

Controllability of a discrete 1-D Schrodinger equation

For this solution we have

NI N/, _ ©N,/1 2 5 (p NA
E,.0)= ftg ! !
»(0) /=0 h 4 - ANhh2 h
On the other hand,
UN(t) 2 oNh

JF' ) dd=T N

0
Note that

4 —hNhh2 = 4 -4 sin2 =4 4 cos2 as h 0.

Thus, the result is established. O

To overcome this obstacle, we rule out the high frequency spurious modes. We define
Cs = span{Of/ such that Ajy, < s}.
In order to obtain a positive counterpart to Theorem 3, we have to introduce suitable sub-
classes of solutions of (7) generated by eigenvectors of (9) associated with eigenvalues such that
Ahl < 7. Foragiven?7 € (0,4), we take solutions of (7) in C7/h2.

We are ready to prove the following uniform boundary observability of the discrete
Schrodinger equation.

Theorem 4. Let0 < 7 < 4. Forall T > 0 there existC —C(T,7) > 0such that

T g 2
Eh( 5’0 hm

for every solution Uj of (8) with uh € C~/h2.

Sketch of the proof. In the range of eigenvalues Ah2 < 7, according to the identity of Lemma 1,
it follows that

O/+1 - O/ (O
hi h S4_7 g (11)
1=0
for any eigenvector ® = (®1,..., dv) associated to an eigenvalue B such that iBii2 < 7, or

equivalent Ah2 < 7.
Let us now consider a solution w of (7) in the class C7/h2. It can be written as

uh(t) = =2 ake Khl DK K.

As was proved in [9], roughly speaking, the asymptotic gap tends to infinity as k -> 00, uni-
formly on the parameter h. Then applying Lemma 2.3 [9] and using (11) we deduce that for

T> 0,
h h
L UN(D) 2 N cp‘?Jrl o)
C(T.7) | h > E KkI”E
Io
AY/2<T7 =°
Moreover,
®U _@kh
Effo)= 1 £ K fj,£ YH !
A, R<7 /=0
Therefore, we obtain the desired inequality. L]



2.2 Uniform controllability of (6)

In this subsection we apply the observability result obtained above to analyze the control-
lability properties of the semi-discrete system (6).
For every s € R, introduce the finite dimensional Hilbert spaces

Hb = span{®i'\ ..., N/I}

endowed with the norm

IHAIIH? = E Ab ldfcl2, whenever fh = E ~ oM
k=1 k=1

where \kh = %3in2(y ).
Let0 < 7 < 4and T > 0. The partial controllability problem of system (6) in the space
H” 1 consists in finding a control € L2(0, T) such that the solution y/, = (W)y of (6) satisfies

n7(yn(r))=0, (12)

where M7 is the orthogonal projection over Cj/h2.
Multiplying (6) by 14j, adding in j and integrating in time, we get

Im/zEy4 ° -Re/ = 0.
j=0 /0
We obtain the following characterization of the partial controllability property of system (6).

Lemma2. LetT > 0and 0 < 7 < 4. Problem (6) is partially controllable in Hh if for every
Vhe there exists a control  such that

Imhfrifjdj = Re f vh(t)INj—-dt,
j=0 Jo

for any initial data th e cy/hz.
The following uniform partial controllability property holds in the space Cy/h2.

Theorem 5. Forall T > 0and 0 < 7 < 4, theproblem (6) is partially controllable in Hhl for
allO < h < 1. Moreover; we have:

(@) the corresponding controls V, in the semi-discrete system (6) satisfying (12) are bounded
in L2(0, T);

(b) the controls converge ash —¥0 to a controlv € L2(0, T) of the minimal L2(0, T)-norm
of the system (4) such thaty(T) = 0.

The proof of this theorem is similar to that in [9], also it can be done as the proof in subsec-
tion 4.2.

3 Fully discrete approximations

Let M, N € N. We seth and At  auw- and introduce the nets

N+1

0=xg<X\=h< < Xi jh< - < xN+HL = 1,

(13)
O=to< ti —At< ---<tk= kAt < ---< Zmti = 1.
We consider the following Crank-Nicolson discretization of (4)
. y'i?i“yi , y;:-'-WE}?---Z-ylﬂr"’ ;Y/Hiaevhm 0, j=1...N,n—1,. .M
Y8 — byt _ T n=1,..M, (14)
I Y2 = Y/ /= 1. N.
We shall denote by y" = (y”,..., var) the solution at the time step n. We consider also the
system
9"+I—u'|: il +M il —=2u"+1 .«?+i+«?_i-2|/1|' _ _
At 2 i -0, =1,...,N,n=1,.,M,
uH = un n=1,., M, (15)
WY = u(
Simple formal calculations give
s+l = (j _ +  1Ab)iin = emkhAtanf
where 1I' = («”, ..., «'y) is the solution at the time step n and = }H\}iﬁ% Writing
N
n° = E ak&Kk*
k=1
then the solution W’ is given by
N
nn= £ akia™, Py (16)
k=1

with ak € C, @ = (®~1 ..., d%) = (sin(knh),..., sin(Nknh)) and

h= ~Karctany - Jm
The energy of (15) is
h N B4

h
1-0
which is a discretization of the continuous energy E in (2), and it is conserved in all the time
steps: En= E°, n= 0,..., M, for the solutions of (15).

3.1 Uniform observability of (15)

In this subsection, our goal is to prove the uniform observability inequality of system (15).
We have the following theorem.



Theorem 6. Let0 < 7 < 4. Assume that

h2
17
A < 17)
where r is apositive constant. Then forany 0 < 3 < ), there exists Tssuch thatforany T > T$

there exists Oy,0,Y such that the observability inequality

M
E° < CjANALE

n=0

18
oh (18)
holds for every solution of (15) with initial data in the class Q /Zgr for all h and At small enough
satisfying (17).

The proof of this Theorem will essentially rely on the following Theorem proved in [5].

Theorem 7. Let | —N or Z and (u/)/N be an increasing sequence of real numbers such that,
for some ©> 0,

el ~Hj\> 8. (19)
Letf be a smooth function satisfies the assumptions: f € C°° and satisfies /(0) = 0,/7'(0) = 1;

f isodd;f : [ R,R] -> [-m, ], where R € R+ U{+00}; inf{/'()]M < <& > 0, where

0 € (0, R). Then for all time
2n

T>
Qinff(cc)

there exist twopositive constants C and To > 0 such thatforall T € (0, To), for all (aj)jei € 12(1)
vanishing forj € | such that Ytj\z > 0,

2
K2<t E <cj>I
c,e, kTe(0,T) Ne el
Proofof Theorem 6. The energy of solutions (15) is
2
NP -y h N 2
ro 1 y
%E H -0z ki2asiz ™
M Jkh<it /=0
where we used
- K
N d)Hl M KK N okh
2 h
=0 7=0
M wkh
Normalizing the eigenvector ®Kli, i.e. /t™ ok = 1, we get
/=0
* + AN A2
= I E ( ?): I E, Ki2f 3 f j =1 E 4cos2(N i)/
AM<)( AHA AhSsi

where
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Here we used the fact that

| +eud(]2= 4cos2 (2%1n) = 1O
4 + x1,hM2
In virtue of (17), we have CL?J ccC i72 and then we get
< —meee- and 4+ JP Ai2< 4+ 8.
On the other hand, we have
M g s N T K
NE ™M = AE 9
-0 "=Q Neh<s
M N M
N\ (%
= AE E pken™ =z a<e £ 7 EAMAK
n=0 S =0 A*A5f

where /(f) = 2arctan(j). It is clear that the function / satisfies the assumptions of Theorem
7. Besides, it was proved in [9] that for all € € (0,1), we have

~mHh ~ AMh ~ 31T —e.
Consequently (19) is verified with 8 = 312 —e. Applying Theorem 7, we obtain

2\ M n+l i ,.n
E0< C@+ M)A"N N

41 T L, 2

forall T > Ts — O

3.2 Uniform controllability of (14)

In this part, we present the following uniform partial controllability result for system (14)
and the convergence result for the controls.

The partial controllability problem for system (14) in the space Hhl consists of finding a
control (pl)o,i,...m such that for all initial data i/0 € H”~1the solution ¢ of (14) satisfies

where 9 is the same in Theorem 6 and Ps is the orthogonal projection over Q ZAi.
The main result of this paper reads as follows.

Theorem 8. Let T47,r and d be given as in Theorem 6. Then for every At and h small enough

and every y0 € H_1(0,1), the system (14) is partially controllable on H~1 with controls v
Moreover, we have:

i) the controls of minimal norm are uniformly bounded with respect to At;

i) the controls v converge to a control v of the minimal L2-norm of the controllable system

(4).



Proof. For any given T > Tg, choose 7,r and & as in Theorem 6 to guarantee the uniform

observability (18). Multiplying the first equation in (14) by a solution -14+— of (15), adding in
j and n and taking the imaginary parts, we get

M ntl i nn

oh N (20)

n=0 j=0

Let " € Q /gi be the solution of (15) with initial data i° and define the functional
Jh,At: R" -> R by

AFf M ”TJ+1 i N v
W «-°) = E -Jm / 'Ei'r
«-°) t E, 2/ i
For n” € Q /4 we have
N
Im A/EOV?W < (Prye,ii®)km < plnyi b - 1)

The functional #Z is continuous and convex. Moreover, in view of the observability inequality
(18), it is clear that JjhAt is coercive. Thus, there exists unique minimizer ii° of JhA,

Jh,At(ii0) = min JhAt(u°).
(“ ) *°eC|s/At (u )

Let nn € Cg/At be the solution of the system (15) with initial data u°. The u°® satisfies the
Euler-Lagrange equation. Calculating The Gateaux derivative of Jh,At in W, we get

MahL + ahail + N

oh on -ImhE M =

f'>0 t /:O

n=0
Therefore, according to (20) we choose the control function ull in system (14) as follows

Gl

n 21
We now check the uniform boundedness of the controls v We have

/N\AI() < W O) - 0,
and by (21), we get

a+loio4n
+ UN
2h
Applying the observability inequality (18) we obtain
M 2 ' m
< 2i 2C(4 + 62) - AE ON+#1 + CN
i : i
Az, 2h 4 —T o 2h
where we used
£° = ﬂlvfli«2_
nA+li ma

Consequently, the controls v%— N2h Nsatisfy

M
5'T K 1 <C(T,3,7) UP H,-.

Therefore, the controls are uniformly bounded with respect to At.

Let us now give some details for the proof of the convergence result. Indeed the proof is
standard and one may use the method developed in [12]. Note that with the notations (16), the
controls (i>£) are of the form

n E mkeiak;'nAt(l + elk™ 1) sm(knNh),

2H \Kh<3/At

where (mt)fc are the Fourier coefficients of the solution Un E Cs/At of (15), with initial data i"°
being the minimizer of the functional sh~t-
We define the continuous extension of the discrete controls by

Vh(t) = E rnke IGkKnt(\ + enk1,At) sm(knNh).

akh<s/At

Now, from the boundedness of (ul)), we see that, extracting subsequences, for some v €
L2(0, T) and i° € Hg(0,1), vh = v weakly in L2(0, T), ill—>11° weakly in 0,1), as At —0.
Moreover, one can show by standard arguments, that

v=-inx(11),

~

where 1 is the solution of (1) with initial data i° € Hq(0, 1), the unique minimizer of the
functional /given in (5). Letting At —0 and Ax — 0 in (20), we get

T 1
Re ﬁ) viix(\)dt + Im i) y°U°dx = 0,
and this later condition implies that the solution of system (4) with control v given as above
satisfies y(T) = 0.
On the other hand, taking into account the convergence of the linear term of the discrete

functional Jh At to the linear term of the discrete continuous functional J, and the structure of /
and Jh/at>we deduce that

T T
i) W \edt —>‘b W2dt as A —0.
This combined with the weak convergence ensure the strong convergence desired. O
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The image of the space of ultradifferentiable functions with compact supports under Fourier-
Laplace transformation is described. An analogue of Paley-Wiener theorem for polynomial ultra-
differentiable functions is proved.
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Introduction

In general Paley-Wiener theorem is any theorem that relates decay properties of a function
or distribution at infinity with analyticity of its Fourier transform [16]. For example, the Paley-
Wiener theorem for the space of smooth functions with compact supports gives a characte-
rization of its image as rapidly decreasing functions having a holomorphic extension to C of
exponential type.

There are plenty of Paley-Wiener-type theorems since there are many kinds of bound for
decay rates of functions and many types of characterizations of smoothness. In this regard
a wide number of papers have been devoted to the extension of the theory on many other
integral transforms and different classes of functions (see [1-3,6,9,15,17,18,20-22] and the
references given there).

Let OB := Q7 (Rd) be the space of Roumieu ultradistributions on Rdand @3 := ~ (R ) be its
predual. A Frechet-Schwartz space (briefly, (FS) space) is one that is Fréchet and Schwartz si-
multaneously (see [23]). It is known (see e.g. [10,19]) that the spaces O'B and G(i are nuclear
Frechet-Schwartz and dual Frechet-Schwartz spaces ((DFS) for short), respectively. These
facts are crucial for our investigation.

In this article we consider Fourier-Laplace transformation, defined on the space 0p of ultra-
differentiable functions and on the corresponding algebra V(Q”) of polynomials over Q™[12],

which have the tensor structure of the form ®/,,, Q”*n (see Theorem 1).

We completely describe the image of test space {8 under Fourier-Laplace transformation
(see Corollary 1 and Theorem 2) and prove Paley-Wiener-type Theorem 3 for polynomial ul-
tradifferentiable functions.

© Sharyn S.V, 2015
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1 Preliminaries and notations

Let ~€?(X) denote the space of continuous linear operators over a locally convex space X
and let X' be the dual of X. Throughout, we will endow Jf(X) and X' with the locally convex
topology of uniform convergence on bounded subsets of X.

Let ®p denote completion of algebraic tensor product with respect to the projective topo-
logy p. Let X®", n € N, be the symmetric nth tensor degree of X, completed in the projective
tensor topology. Note, that here and subsequently we omit the index p to simplify notations.
For any x € X we denote x®” X® -0 X EX®", n EN. Set XBR®° := C,x®° := 1€C.

.
To define the locally convex space Vn(X') of «-homogeneous polynomials on X' we use

the canonical topological linear isomorphism
vn(x"') N (X'®ny

described in [4]. Namely, given a functional pn € (X'®n)', we define an «-homogeneous poly-
nomial Pn € Vn(X") by Pn(x) 's=Pn(x®”)/ x € X'. We equip Vn{X") with the locally convex
topology b of uniform convergence on bounded sets in X". Set Vq(X') := C. The space V (Xi)
of all continuous polynomials on X' is defined to be the complex linear span of all VAX"),
n € Z+, endowed with the topology b. Denote

rm:=© f> C ® X®n.

neZ+ neXx+

Note, that we consider only the case when the elements of direct sum consist of finite but not
fixed number of addends. For simplicity of notation we write T(X) instead of commonly used

rfi,, (X).
We have the following assertion (see also [12, Proposition 2.1]).

Theorem 1. There exists the linear topological isomorphism
YX:Y(X)-+V(X")
for any nuclear (F) or (DF) space X.

Let A : X — >Y be any linear and continuous operator, where X, ¥ are locally convex
spaces. It is easy to see, that the operator A <ply, defined on the tensor product X ® Y by the
formula

(A Sh)(x ®y) m—AX ®Y, XEX, yeEY,

is linear, where ly denotes the identity on Y. The operator A <gly is continuous in projective
topology p and it has a unique extension to linear continuous operator onto the space X ®pY.
The following assertion essentially will be used in the proof of Theorem 3.

Proposition 1 ([13]). Forany nuclear (F) or (DF) spaces X, Y, and any operator A € Jz?(X,Y)
the following equality holds

ker(A 9 ly) = ker(A) Y.

2 Spaces of functions

Let us consider the definition and some properties of the space of Gevrey ultradifferen-
tiable functions with compact supports. For more details we refer the reader to [10,11].

We use the following notations: tk := tkl m... mtid, kkP := .. KN\ K\ -f -— bk»
for all tJ: (ti,... .Jd) € JRd(or Cd), k — (k\,.. .,kd) € Zz+ andF > 1 Letdk := ... ded, where
djz" = aildtj',j = 1,...,d The notationy <vwith gy, v € IR meansthatflN < w,... W< VW
(similarly, p ¥ v). Let [u,v] := [U\\VA X ... X [M4, vd] and (p,v) = (M1,v\) X ... X (pa,va) for
any g <v. In the following t € [y, v} means that tj € [, vjj and t — 00 (resp. t -» 0) means
that tj — oo (resp. tj —0) forall; = 1,..., d.

A complex infinitely smooth function @ on Rd is called a Gevrey ultradifferentiable with
B > 1 (see [10, 11.2.1]) if for every [u,Vv] C there exist constants h > 0 and C > 0 such that

sup |3<pf)] < Ch~kk~ 1)
feM

holds for all k € Zz» .

For a fixed h > 0, consider the subspace [y, v] of all functions supported by [y, v] C IR
and such that there exists a constant C = C(cp) > 0, that inequality (1) holds for all k €
Z”. Therefore, the space of ultradifferentiable functions with compact supports is defined as
follows

SjstM = W € C°°(Rd) : supp<p C {LuVI\\<P\\[uv} < °°}/

with the norm

Proposition 2 ([10]). Each Gfilfix; vy is a Banach space, and gH inclusigns $9[u, vl ~ Gl [y, v] with
h < I are compact. Moreover, if [u,v] C [u', v'], then @[y, v] is closed subspace in Qh[ul v'].

This proposition implies that the set of Banach spaces

{6B[M,v} : [uV] C R, h > 6}

is partially ordered. Therefore we can consider this set as inductive system with respect to
stated above compact inclusions. Hence, we define the space

5«(R" := Il Biiy,v], 5Q(RI) ¢; limind5j(/Z(,i',
MEI>O ‘'~ h>°

and endow it with the topology of inductive limit.
The strong dual space Q7(Rd) is called the space of Roumieu ultradistributions on IRt

Proposition 3 ([10]). The spaces OB(E.a) and Q”(Rd) are nonempty locally convex nuclear re-
flexive spaces. Moreover, {!B(JKa) is (DFS) space, and Q”~(Rd) is (FS) space.

Next define the space of entire functions of exponential type, which will be an image of the
space 0B (Ka) under the Fourier-Laplace transformation (see Section 3).



Let M be a set in JRd. The support function of the set M is defined to be a function

HM(x) = sup(f,x), x e K d,
teM

where (t,x) := N\ + ®m -+ t™Xd denotes the scalar product. It is known [7], that Hu{i]) is
convex, lower semi-continuous function, that may take the value +00. If M is bounded set,
then its support function is continuous.

Let Br C Cifbe a ball of a radius r > 0. The space E(Cd) of entire functions of exponential
type we will endow with locally convex topology of uniform convergence on compact sets.
This topology can be defined by the system of seminorms

Pr,MO) := sup\Y()\e~HV"\
zeBr

where n = (n\,... ,na) € Rdisimaginary partof2 = (21,..., zd) € Cl/.

Fix an arbitrary real B > 1. For a positive number h > 0 and vectors y = (p\,..., "),
v = (vi,..., V) € IRd, such that p <v, in the space of entire functions of exponential type we
define the subspace Ef[y, v] of functions Cd 3 2 +—>{({) € C with finite norm

\Kip(z)e~H WNo\
Mc> v — » 5— =m 2

Since for any r > 0 and Y € EB{y, v] the next inequality P @ V(@) < [/EBNpViis valid, then all
inclusions EfB[p,v] 9> E(Cd) are continuous.

Proposition 4. Each space EB[y, v] is Banach space, and all inclusions

EB[w.v] 'H EB[u",v]  with  [uv] C [uiv’], h <h’,
are compact.

Proof. Let us prove the completeness of the space EB[u, v]. Let {tpm}meN be a Cauchy sequence
in EB [y, v]. It means that for every € > 0 there exists an integer Ne € N such that Vm, n > Neg
the next inequality \Ngm—ipnlle™pyv] < € is valid.

The following inequality

P4 w eHM<)5 inkin' f 6tytl

zeBr

is obvious for all k € and r > 0. It follows that {pmimeN/where ¢m(z) := is

fundamental sequence in the space of entire functions of exponential type. Therefore for any
k €Z”™ and r > 0 we have

ZeBr

24 L) M 2)N\e-HM W) <¢ Vim, n > Ne(3)
KNP

Since {<pmiweN is fundamental sequence, it is bounded in E(Cd). From the Bernstein theorem
on compactness [14, theorem 3.3.6] it follows that there exist a subsequence N and a
function @ € E(Cd) such that the following equality is satisfied

lim sup — —kmin, /7 Q)" =0, kezd, r>0.
kmKx>zeBr ANKNKP

Let us pass to the limit in (3) as m — km — 00. Consequently, for all k € Z+ and r > 0 we
obtain the inequality

Sup 1 ()= FECY) Tetnl () < £

which satisfies for all n > Ne. Hence from the triangle inequality we obtain

where no = Ne+ 1.
Taking a supremum over k and r in the above inequality, we obtain

NNESIM N N\ \pLV]+*
therefore Y € EB [y, v]. Hence, the space EB [y, V] is complete.
The compactness of inclusions E[u,v] 3> EB[u',v'] with [p,v] C [p"v'], < h' follows

from obvious inequality e~ and from [10, pp. 38-40]. O
Define the space
EB{€da):= (I EB[u.V], EB(€4d) ~ limind E™y,1/],
fir,v,h>0 Hov,o>

and endow it with the topology of inductive limit with respect to compact inclusions from the
Proposition 4.

In what follows to simplify the notations we will write 08 := 0B(Ka), = QN(Rd),
EB := EB(Cd), EB := EB(Cd).

3 Fourier-Laplace transform and Paley-W iener-type theorem

Consider the inductive limits of Banach spaces

Eti[u,v\ 1= M 0B\y,Vv], EB[u,v] ™ limindoa[u,v],

and
9BuA] = U 9p[u,v1. 0B[u,v1 ~ Hn~nd”™ [fi,v].
h>0 oo
On the space 0B we define the Fourier-Laplace transform

W) = (Ff)(z) = T e~INz~(t)dt,  @EUB, zeCd. )

Our main task is to show, that the function @(Z) belongs to the space EB, moreover, we
will prove that the mapping F : 0B — >E is surjective. For this end we prove the following
auxiliary statement, which can be found in [8, Lemma 1], but our proof is different.



Proposition 5. The image of the space OB[u, V] with respect to mapping F is the space EB [y, V).

Proof. Let @ € OB[u,v], Properties of the Fourier transform imply dk(p(z) = zkcp{z) for all
k € Zfy.. Therefore for any z and k we have

KOO\ = 1 f MW (D < £ \B-~BA @ (A \ai
(4] 1JRd£ Yo (n(o <J[fM B-"BAM@(n\ai

< f it
Pu iyl
It follows
BM - cIMUm’ &
where C = MN/=1(vj ~ Fj)- Hence, F(Q™[u,v]) ¢ E™Nu,v].
Vice versa. Let ¢ € EB[u,v]. Itis known, that the norm of the space EB[u,v] can be defined
by the formula

Jzkip(z)e~H™™ |

moreover, the topology, defined by this norm, is equivalent to earlier defined (see (2)). It fol-
lows that for each function y € E%u,v] there exists a constant C such that the inequality

kip(z2)\ < ChWAK\\PeHM {,I) (6)
holds for all z € Cd.
The following inequality
= (S")f= (=2 > B -
m=0

holds for all t € IRand m € Z +. In particular, for t = \zZ\VVh and m = \\ we obtain

AV)TI
ANCNQN
Hence from the inequality \k\< [z]Mit follows
B rHM ,,) >
Nk \ - em) )W’

where L = ly. So, if the function ( satisfies the inequality (6), i.e. belongs to the space EB[y, V],
then it satisfies the inequality

YO\ <
From the theorem [10, theorem 2.22] it follows that there exists a function ¢ € O[u,v] such
that ¢ = , i.e. E~[p,v] C F(Q/[W,V])-

Hence, we have proved F(Q”,v]) = E~Ip,v]. Since the constant h > 0 is arbitrary, prop-
erties of inductive limit imply the desired equality

P("Blu.v]) = EB[M,V].

The immediate consequence of the Proposition 5 and of the properties of inductive limit is
the following assertion.

Corollary 1. Theimage of the space OB with respect to mapping F is the space Ep.
Therefore, we may consider the adjoint mapping F' : Ef —» Q™

Theorem 2. There exist the following topological isomorphisms
F(5p) — EB and F'(E™) * Qf.

Proof The inequality (5) implies, that the mapping

F mOB[y, V] 3 @ +=>¢ € EB[u, V]

is continuous. From the Proposition 5 we obtain the surjectivity of the map. Therefore,
the open map theorem [5, theorem 6.7.2] implies the topological isomorphism P(8B[y, v]) ~
EB [, v]. Since the segment [y, V] is arbitrary, the properties of inductive limit imply the desired
topological isomorphisms. O

Using the Theorem 1and a tensor structure of the space

rep) =0//A®7C 06 Sf".
iiezf
we extend the mapping F to the mapping F®, that defined onl ().

At first, take an element @®" € Q”n, with @ € OB, from the total subset of Q”*nmDefine the
operator F®” as follows

FR" : /@ i—* ¢®” and F®° := TC,

where q®’ := (P@)0n. Next, we extend the map F®" onto whole space Qfnby linearity and
continuity. So, we obtain F®” € .5f(G*n, E”n). Finally, we define F® as the mapping

FR:=(F®”):r(Sp)Bp:=(pn) —» ?2:=(?») €TI(E,), 7
where pn € gf", p, m=F®"p, € Efn.
The following commutative diagram

nep) -P(EB)

r(6B) P ml(EP)

uniquely defines the operator Fp : V(G?) -  v(E'B). The map Ep we will call the polynomial
Fourier-Laplace transformation.

We proved above that the mappings F : O3 — > EfB and F' : Ef — > (' are topological
isomorphisms. Let us prove the analogue of this result. The next theorem may be considered
as Paley-Wiener-type theorem.



Theorem 3. Polynomial Fourier-Laplace transformation is topological isomorphism from the
algebra into the algebra

Proof. From the Theorem 1 and commutativity of the diagram (8) it follows that it is enough
to show that the mapping F® : T(6B) — >T'(E”) is topological isomorphism.
Theorem 2 and Corollary 1 imply the following equalities

kerF = {0}, kerF-1 = {0}.
Let us consider the operators

IR0 F :OB0 Qp — >0 ®EP, FO IE: OBOER — >ERO0 EP,
leo F-1 :EPO EB — >EBO OB, F-10 Ipp:ERO £ — > 0B O <P

Since spaces OB and EP are nuclear (DF) spaces, Proposition 1 implies the equalities

ker(J™ 0 F)
Ker(IE~ 0 F-1)

{0},  ker(FO IEB) = {0},
{0}, ker(F-1® Icp) = {O0}.

Therefore, compositions of these operators have the trivial kernels, i.e.

ker ((F 0 1EB) 0 (1B O F))
ker ((F"10 16B) 0 (IE30 F"1))

ker(F 0 F) = {0},
ker(F-1 0 F_1) = {0}.

Proceeding inductively finite times, we obtain

ker F®”

ker (FO ---0 F) = {0},
i‘lﬁ

ker(F-1)®” = ker (F-1 0 5.0 F_}) = {0},

0

for all natural n. Note, that the mappings F®", (F-1)®" are continuous as tensor products of
continuous operators. Since (F8'1)-1 = (F-1)®", the mapping F®” : Q*n — > E/nis topolo-
gical isomorphism. Finally, the map F® : T(0B) — >T(£”) is topological isomorphism via the
properties of direct sum topology. O
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Y cTaTTi onmncaHo o6pa3 MpPocTopy yNbTpaandepeHLinoBHUX PYHKL i 3 KOMMaKTHUMU HOCIiAMU
BiAHOCHO nepeTBopeHHA Pyp'e-J/lannaca. JosefeHo aHanor Teopemu Meni-BiHepa Ans noniHomi-
anbHUX yNbTpaangepeHLinoBHUX QYHKL,INA.

KntoyoBi cnosa i hpasu: ynbTpagmndepeHuiioBHa yHKL i, ynbTpapo3nogin, noniHoMiasnbHa oc-
HOBHa PYHKLIisA, Teopema Tuny MNeni-BiHepa.
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